Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems

In this paper, we study the problem features that may cause a multi-objective genetic algorithm (GA) difficulty in converging to the true Pareto-optimal front. Identification of such features helps us develop difficult test problems for multi-objective optimization. Multi-objective test problems are constructed from single-objective optimization problems, thereby allowing known difficult features of single-objective problems (such as multi-modality, isolation, or deception) to be directly transferred to the corresponding multi-objective problem. In addition, test problems having features specific to multi-objective optimization are also constructed. More importantly, these difficult test problems will enable researchers to test their algorithms for specific aspects of multi-objective optimization.

[1]  J. D. Schaffer,et al.  Some experiments in machine learning using vector evaluated genetic algorithms (artificial intelligence, optimization, adaptation, pattern recognition) , 1984 .

[2]  J. D. Schaffer,et al.  Multiple Objective Optimization with Vector Evaluated Genetic Algorithms , 1985, ICGA.

[3]  Ralph E. Steuer Multiple criteria optimization , 1986 .

[4]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[5]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[6]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[7]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.

[8]  L. Darrell Whitley,et al.  The GENITOR Algorithm and Selection Pressure: Why Rank-Based Allocation of Reproductive Trials is Best , 1989, ICGA.

[9]  Kalyanmoy Deb,et al.  Messy Genetic Algorithms: Motivation, Analysis, and First Results , 1989, Complex Syst..

[10]  Kalyanmoy Deb,et al.  An Investigation of Niche and Species Formation in Genetic Function Optimization , 1989, ICGA.

[11]  Larry J. Eshelman,et al.  The CHC Adaptive Search Algorithm: How to Have Safe Search When Engaging in Nontraditional Genetic Recombination , 1990, FOGA.

[12]  Frank Kursawe,et al.  A Variant of Evolution Strategies for Vector Optimization , 1990, PPSN.

[13]  L. Darrell Whitley,et al.  Fundamental Principles of Deception in Genetic Search , 1990, FOGA.

[14]  José Carlos Príncipe,et al.  A Simulated Annealing Like Convergence Theory for the Simple Genetic Algorithm , 1991, ICGA.

[15]  Kalyanmoy Deb,et al.  Genetic Algorithms, Noise, and the Sizing of Populations , 1992, Complex Syst..

[16]  Kalyanmoy Deb,et al.  Massive Multimodality, Deception, and Genetic Algorithms , 1992, PPSN.

[17]  John J. Grefenstette,et al.  Deception Considered Harmful , 1992, FOGA.

[18]  Joe Suzuki A Markov Chain Analysis on A Genetic Algorithm , 1993, ICGA.

[19]  Kalyanmoy Deb,et al.  Multimodal Deceptive Functions , 1993, Complex Syst..

[20]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[21]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[22]  L. Darrell Whitley,et al.  Serial and Parallel Genetic Algorithms as Function Optimizers , 1993, ICGA.

[23]  J. Eheart,et al.  Genetic-algorithm-based design of groundwater quality monitoring system , 1993 .

[24]  Kalyanmoy Deb,et al.  MULTI-OBJECTIVE FUNCTION OPTIMIZATION USING NON-DOMINATED SORTING GENETIC ALGORITHMS , 1994 .

[25]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[26]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[27]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[28]  Kalyanmoy Deb,et al.  Real-coded Genetic Algorithms with Simulated Binary Crossover: Studies on Multimodal and Multiobjective Problems , 1995, Complex Syst..

[29]  Hillol Kargupta,et al.  The Gene Expression Messy Genetic Algorithm , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[30]  David E. Goldberg,et al.  Genetic algorithm design of Pareto optimal broadband microwave absorbers , 1996 .

[31]  Peter J. Fleming,et al.  On the Performance Assessment and Comparison of Stochastic Multiobjective Optimizers , 1996, PPSN.

[32]  G. Harik Learning gene linkage to efficiently solve problems of bounded difficulty using genetic algorithms , 1997 .

[33]  Jeffrey Horn,et al.  Handbook of evolutionary computation , 1997 .

[34]  Jeffrey Horn,et al.  Multicriterion decision making , 1997 .

[35]  António Gaspar-Cunha,et al.  Use of Genetic Algorithms in Multicriteria Optimization to Solve Industrial Problems , 1997, ICGA.

[36]  G. Rudolph On a multi-objective evolutionary algorithm and its convergence to the Pareto set , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[37]  Kishalay Mitra,et al.  Multiobjective dynamic optimization of an industrial Nylon 6 semibatch reactor using genetic algorit , 1998 .

[38]  Zbigniew Michalewicz,et al.  A Decoder-Based Evolutionary Algorithm for Constrained Parameter Optimization Problems , 1998, PPSN.

[39]  Lothar Thiele,et al.  An evolutionary algorithm for multiobjective optimization: the strength Pareto approach , 1998 .

[40]  Geoffrey T. Parks,et al.  Selective Breeding in a Multiobjective Genetic Algorithm , 1998, PPSN.

[41]  Günter Rudolph,et al.  Evolutionary Search for Minimal Elements in Partially Ordered Finite Sets , 1998, Evolutionary Programming.

[42]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. II. Application example , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[43]  Marco Laumanns,et al.  A Spatial Predator-Prey Approach to Multi-objective Optimization: A Preliminary Study , 1998, PPSN.

[44]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[45]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[46]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[47]  Gary B. Lamont,et al.  Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art , 2000, Evolutionary Computation.

[48]  C. Poloni,et al.  Hybridization of a multi-objective genetic algorithm, a neural network and a classical optimizer for a complex design problem in fluid dynamics , 2000 .