Estimating the long-term calving flux of Kronebreen, Svalbard, from geodetic elevation changes and mass-balance modeling

Abstract This study independently quantifies geodetic elevation change and models surface mass balance to solve the continuity equation. The approach is tested on two dynamically different glaciers, Kongsvegen and Kronebreen in northwest Svalbard, through two time epochs, 1966-1990/95 (I) and 1990/95-2007 (II). On Kongsvegen, a dynamically inactive glacier, the residual term represents an error associated with determining elevation changes and surface mass balance. It is apparent that centerline mass-balance estimates are not representative of the entire glacier, which we relate to center-line accumulation being larger than the elevation bin average. On Kronebreen, a fast-flowing and actively calving glacier, a significant part of the residual is identified with the long-term calving flux. For both glaciers, the cumulative surface mass balance remained close to zero during the first epoch but became increasingly negative in the second epoch. The long-term calving flux of Kronebreen is estimated to be -0.14 ± 0.03 km3 w.e.a-1 during epoch I and-0.20 ± 0.05 km3 w.e.a-1 in epoch II.

[1]  Anne-Marie Nuttall,et al.  Detection of superimposed ice on the glaciers Kongsvegen and midre Lovénbreen, Svalbard, using SAR satellite imagery , 2002, Annals of Glaciology.

[2]  A. Kääb Photogrammetric reconstruction of glacier mass balance using a kinematic ice-flow model: a 20 year time series on Grubengletscher, Swiss Alps , 2000, Annals of Glaciology.

[3]  G. Østrem,et al.  Glacier mass-balance measurements : A manual for field and office work , 1993 .

[4]  A. Kääb,et al.  Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change , 2011 .

[5]  J. Hagen,et al.  Mass-balance estimates on the glacier complex Kongsvegen and Sveabreen, Spitsbergen, Svalbard, using radioactive layers , 1994, Journal of Glaciology.

[6]  Victor Zlotnicki,et al.  Time‐variable gravity from GRACE: First results , 2004 .

[7]  W. G. Rees,et al.  Mass balance and dynamics of a valley glacier measured by high-resolution LiDAR , 2007, Polar Record.

[8]  M. Sharp,et al.  Flow dynamics and iceberg calving rates of Devon Ice Cap, Nunavut, Canada , 2005, Journal of Glaciology.

[9]  Delphine Six,et al.  Glacier melt, air temperature and energy balance in different climates: the Bolivian Tropics, the French Alps and northern Sweden , 2008 .

[10]  Bernard Lefauconnier,et al.  Glacier balance trends in the Kongsfjorden area, western Spitsbergen, Svalbard, in relation to the climate , 1999 .

[11]  James K. Yungel,et al.  Elevation changes of ice caps in the Canadian Arctic Archipelago , 2004 .

[12]  M. R. van den Broeke,et al.  Temperature thresholds for degree‐day modelling of Greenland ice sheet melt rates , 2010 .

[13]  Y. Arnaud,et al.  Recent rapid thinning of the “Mer de Glace” glacier derived from satellite optical images , 2004 .

[14]  L. Andreassen Comparing Traditional Mass Balance Measurements with Long‐term Volume Change Extracted from Topographical Maps: A Case Study of Storbreen Glacier in Jotunheimen, Norway, for the Period 1940–1997 , 1999 .

[15]  S. P. Anderson,et al.  Response of glacier basal motion to transient water storage , 2007 .

[16]  Andreas Kääb,et al.  Svalbard glacier elevation changes and contribution to sea level rise , 2010 .

[17]  A. Bouillon,et al.  SPOT 5 HRS geometric performances: Using block adjustment as a key issue to improve quality of DEM generation , 2006 .

[18]  W. Harrison,et al.  Quantifying the effects of climate and surface change on glacier mass balance , 2001, Journal of Glaciology.

[19]  Jack Kohler,et al.  Topographic controls on the surface energy balance of a high Arctic valley glacier , 2006 .

[20]  C. Schoof Ice-sheet acceleration driven by melt supply variability , 2010, Nature.

[21]  R. Braithwaite On Glacier Energy Balance, Ablation, and Air Temperature , 1981, Journal of Glaciology.

[22]  Andrea Taurisano,et al.  Calibrating a surface mass-balance model for Austfonna ice cap, Svalbard , 2007, Annals of Glaciology.

[23]  Marc Bernard,et al.  SPIRIT. SPOT 5 stereoscopic survey of Polar Ice: Reference Images and Topographies during the fourth International Polar Year (2007-2009) , 2008 .

[24]  P. Holmlund,et al.  Reanalysis of multi-temporal aerial images of Storglaciären, Sweden (1959–99) – Part 2: Comparison of glaciological and volumetric mass balances , 2010 .

[25]  R. Bindschadler Jakobshavns Glacier drainage basin - A balance assessment , 1984 .

[26]  Robert M. Krimmel,et al.  Analysis of Difference Between Direct and Geodetic Mass Balance Measurements at South Cascade Glacier, Washington , 1999 .

[27]  Andreas Kääb,et al.  Modelling mass balance using photogrammetric and geophysical data : a pilot study at Griesgletscher, Swiss Alps , 1999 .

[28]  J. Rudant,et al.  Flow speed and calving rate of Kongsbreen glacier, Svalbard, using SPOT images , 1994 .

[29]  R. Bindschadler,et al.  Combined measurements of subglacial water pressure and surface velocity of Findelengletscher, Switzerland: conclusions about drainage system and sliding mechanism , 1986 .

[30]  Jon Ove Hagen,et al.  Geometric changes and mass balance of the Austfonna ice cap, Svalbard , 2009 .

[31]  Yushin Ahn,et al.  Glacier velocities from time-lapse photos: technique development and first results from the Extreme Ice Survey (EIS) in Greenland , 2010, Journal of Glaciology.

[32]  Jon Ove Hagen,et al.  Geometry changes on Svalbard glaciers: mass-balance or dynamic response? , 2005, Annals of Glaciology.

[33]  Martin Funk,et al.  Flow dynamics of tidewater glaciers: a numerical modelling approach , 2001, Journal of Glaciology.

[34]  Andreas Bauder,et al.  Towards an Indirect Determination of the Mass‐balance Distribution of Glaciers using the Kinematic Boundary Condition , 1999 .

[35]  K. Melvold,et al.  Evolution of a Surge-Type Glacier in its Quiescent Phase: Kongsvegen, Spitsbergen, 1964–95 , 1998, Journal of Glaciology.

[36]  A. Arendt,et al.  Rapid Wastage of Alaska Glaciers and Their Contribution to Rising Sea Level , 2002, Science.

[37]  N. Eckert,et al.  Glaciological and volumetric mass-balance measurements: error analysis over 51 years for Glacier de Sarennes, French Alps , 2008, Journal of Glaciology.

[38]  D. Rowlands,et al.  Recent glacier mass changes in the Gulf of Alaska region from GRACE mascon solutions , 2008, Journal of Glaciology.

[39]  Jack L. Saba,et al.  Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992-2002 , 2005 .

[40]  Regine Hock,et al.  Temperature index melt modelling in mountain areas , 2003 .

[41]  Andreas Kääb,et al.  Flow field of Kronebreen, Svalbard, using repeated Landsat 7 and ASTER data , 2005, Annals of Glaciology.

[42]  Olav Liestøl,et al.  The glaciers in the Kongsfjorden area, Spitsbergen , 1988 .

[43]  U. Voigt The Determination of the Direction of Movement on Glacier Surfaces by Terrestrial Photogrammetry , 1966, Journal of Glaciology.

[44]  Bernard Lefauconnier,et al.  Mass Balance Methods on Kongsvegen, Svalbard , 1999 .

[45]  Roger J. Braithwaite Positive degree-day factors for ablation on the Greenland ice sheet studied by energy-balance modelling , 1995 .

[46]  Alun Hubbard,et al.  Glacier mass-balance determination by remote sensing and high-resolution modelling , 2000, Journal of Glaciology.

[47]  H. Bader Sorge’s Law of Densification of Snow on High Polar Glaciers , 1953 .

[48]  Veijo A. Pohjola,et al.  Determination of firn density in ice cores using image analysis , 2007 .

[49]  N. Barrand,et al.  Spatio-temporal variability in elevation changes of two high-Arctic valley glaciers , 2010, Journal of Glaciology.

[50]  Atsumu Ohmura,et al.  Physical Basis for the Temperature-Based Melt-Index Method , 2001 .

[51]  N. Barrand,et al.  Acceleration in thinning rate on western Svalbard glaciers , 2007 .

[52]  J. Kohler,et al.  The distribution of snow accumulation across the Austfonna ice cap, Svalbard: direct measurements and modelling , 2007 .

[53]  Brian Menounos,et al.  Contribution of Alaskan glaciers to sea-level rise derived from satellite imagery , 2010 .

[54]  L. Cox,et al.  Comparison of geodetic and glaciological mass-balance techniques, Gulkana Glacier, Alaska, U.S.A. , 2004, Journal of Glaciology.

[55]  J. Brigham‐Grette,et al.  Glacimarine sedimentation processes at Kronebreen and Kongsvegen, Svalbard , 2011, Journal of Glaciology.

[56]  J. Hagen,et al.  Glaciers and Climate in Svalbard: Statistical Analysis and Reconstruction of the Brøggerbreen Mass Balance for the Last 77 Years , 1990, Annals of Glaciology.

[57]  Rune Storvold,et al.  Use of C-Band Ground Penetrating Radar to Determine Backscatter Sources Within Glaciers , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[58]  Ola Brandt,et al.  Spatial mapping of multi-year superimposed ice on the glacier Kongsvegen, Svalbard , 2008, Journal of Glaciology.

[59]  Jon Ove Hagen,et al.  Glacier geometry and elevation changes on Svalbard (1936–90): a baseline dataset , 2007, Annals of Glaciology.

[60]  A. Bauder,et al.  Homogenization of long-term mass-balance time series , 2009, Annals of Glaciology.

[61]  Barclay Kamb,et al.  Glacier surge mechanism based on linked cavity configuration of the basal water conduit system , 1987 .

[62]  Christopher Nuth,et al.  Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry , 2010 .

[63]  F. Paul The influence of changes in glacier extent and surface elevation on modeled mass balance , 2010 .