Structural basis of differential ligand recognition by two classes of bis-(3′-5′)-cyclic dimeric guanosine monophosphate-binding riboswitches

The bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) signaling pathway regulates biofilm formation, virulence, and other processes in many bacterial species and is critical for their survival. Two classes of c-di-GMP-binding riboswitches have been discovered that bind this second messenger with high affinity and regulate diverse downstream genes, underscoring the importance of RNA receptors in this pathway. We have solved the structure of a c-di-GMP-II riboswitch, which reveals that the ligand is bound as part of a triplex formed with a pseudoknot. The structure also shows that the guanine bases of c-di-GMP are recognized through noncanonical pairings and that the phosphodiester backbone is not contacted by the RNA. Recognition is quite different from that observed in the c-di-GMP-I riboswitch, demonstrating that at least two independent solutions for RNA second messenger binding have evolved. We exploited these differences to design a c-di-GMP analog that selectively binds the c-di-GMP-II aptamer over the c-di-GMP-I RNA. There are several bacterial species that contain both types of riboswitches, and this approach holds promise as an important tool for targeting one riboswitch, and thus one gene, over another in a selective fashion.

[1]  A. Datta,et al.  Heuristic RNA pseudoknot prediction including intramolecular kissing hairpins. , 2011, RNA.

[2]  B. Giese,et al.  Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. , 2004, Genes & development.

[3]  Zasha Weinberg,et al.  An Allosteric Self-Splicing Ribozyme Triggered by a Bacterial Second Messenger , 2010, Science.

[4]  A. Serganov The long and the short of riboswitches. , 2009, Current opinion in structural biology.

[5]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[6]  Thomas C. Terwilliger,et al.  Electronic Reprint Biological Crystallography Maximum-likelihood Density Modification , 2022 .

[7]  Lei Yan,et al.  A simple solid-phase synthesis of the ubiquitous bacterial signaling molecule, c-di-GMP and analogues. , 2008, Molecular bioSystems.

[8]  G N Murshudov,et al.  Use of TLS parameters to model anisotropic displacements in macromolecular refinement. , 2001, Acta crystallographica. Section D, Biological crystallography.

[9]  Regine Hengge,et al.  Principles of c-di-GMP signalling in bacteria , 2009, Nature Reviews Microbiology.

[10]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[11]  R. Breaker,et al.  Riboswitches in Eubacteria Sense the Second Messenger Cyclic Di-GMP , 2008, Science.

[12]  H. Sondermann,et al.  Vibrio cholerae VpsT Regulates Matrix Production and Motility by Directly Sensing Cyclic di-GMP , 2010, Science.

[13]  Zhao-Xun Liang,et al.  Enzymatic synthesis of c-di-GMP using a thermophilic diguanylate cyclase. , 2009, Analytical biochemistry.

[14]  A. Camilli,et al.  Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. , 2007, Annual review of microbiology.

[15]  Peter D. Newell,et al.  LapD is a bis-(3′,5′)-cyclic dimeric GMP-binding protein that regulates surface attachment by Pseudomonas fluorescens Pf0–1 , 2009, Proceedings of the National Academy of Sciences.

[16]  U. Jenal,et al.  Structural and mechanistic determinants of c-di-GMP signalling , 2009, Nature Reviews Microbiology.

[17]  Volker Roth,et al.  Second Messenger-Mediated Adjustment of Bacterial Swimming Velocity , 2010, Cell.

[18]  T. Schwede,et al.  Second messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell cycle progression. , 2009, Genes & development.

[19]  D. Giedroc,et al.  Frameshifting RNA pseudoknots: Structure and mechanism , 2008, Virus Research.

[20]  Dorit Amikam,et al.  Cyclic di-GMP as a second messenger. , 2006, Current opinion in microbiology.

[21]  A. L. Mackay,et al.  Crystallography , 1976, Nature.

[22]  I. Brierley,et al.  Viral RNA pseudoknots: versatile motifs in gene expression and replication , 2007, Nature Reviews Microbiology.

[23]  N. Escaja,et al.  A Straightforward Solid‐Phase Synthesis of Cyclic Oligodeoxyribonucleotides , 1997 .

[24]  Andrea L Edwards,et al.  Riboswitches: structures and mechanisms. , 2011, Cold Spring Harbor perspectives in biology.

[25]  Michael Y. Galperin,et al.  PilZ domain is part of the bacterial c-di-GMP binding protein , 2006, Bioinform..

[26]  Kathryn D. Smith,et al.  Structural basis of ligand binding by a c-di-GMP riboswitch , 2009, Nature Structural &Molecular Biology.

[27]  G. Roberts,et al.  Cyclic di-GMP Allosterically Inhibits the CRP-Like Protein (Clp) of Xanthomonas axonopodis pv. citri , 2009, Journal of bacteriology.

[28]  U. Jenal,et al.  Mechanisms of cyclic-di-GMP signaling in bacteria. , 2006, Annual review of genetics.

[29]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[30]  C. Harwood,et al.  Identification of FleQ from Pseudomonas aeruginosa as a c‐di‐GMP‐responsive transcription factor , 2008, Molecular microbiology.

[31]  E. Westhof,et al.  Geometric nomenclature and classification of RNA base pairs. , 2001, RNA.

[32]  D. W. Staple,et al.  Open access, freely available online Primer Pseudoknots: RNA Structures with Diverse Functions , 2022 .

[33]  Yoshihiro Hayakawa,et al.  A cyclic-di-GMP receptor required for bacterial exopolysaccharide production , 2007, Molecular microbiology.

[34]  D. Blair,et al.  The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a "backstop brake" mechanism. , 2010, Molecular cell.

[35]  P. Cotter,et al.  c-di-GMP-mediated regulation of virulence and biofilm formation. , 2007, Current opinion in microbiology.

[36]  R. Breaker,et al.  The structural and functional diversity of metabolite-binding riboswitches. , 2009, Annual review of biochemistry.

[37]  J. Kieft,et al.  A general strategy to solve the phase problem in RNA crystallography. , 2007, Structure.

[38]  R. Micura Cyclic Oligoribonucleotides (RNA) by Solid‐Phase Synthesis , 1999 .

[39]  Anna Marie Pyle,et al.  Evaluating and learning from RNA pseudotorsional space: quantitative validation of a reduced representation for RNA structure. , 2007, Journal of molecular biology.

[40]  Kathryn D. Smith,et al.  Structural and biochemical determinants of ligand binding by the c-di-GMP riboswitch . , 2010, Biochemistry.

[41]  Lian-Hui Zhang,et al.  The Cyclic Nucleotide Monophosphate Domain of Xanthomonas campestris Global Regulator Clp Defines a New Class of Cyclic Di-GMP Effectors , 2009, Journal of bacteriology.

[42]  S. Strobel,et al.  Tertiary interactions with the internal guide sequence mediate docking of the P1 helix into the catalytic core of the Tetrahymena ribozyme. , 1993, Biochemistry.

[43]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[44]  Thomas R. Schneider,et al.  HKL2MAP: a graphical user interface for macromolecular phasing with SHELX programs , 2004 .

[45]  J. M. Dow,et al.  The cAMP receptor-like protein CLP is a novel c-di-GMP receptor linking cell-cell signaling to virulence gene expression in Xanthomonas campestris. , 2010, Journal of molecular biology.