CLASSIFICATION OF AIRBORNE LASER SCANNING DATA USING GEOMETRIC MULTI-SCALE FEATURES AND DIFFERENT NEIGHBOURHOOD TYPES

In this paper, we address the classification of airborne laser scanning data. We present a novel methodology relying on the use of complementary types of geometric features extracted from multiple local neighbourhoods of different scale and type. To demonstrate the performance of our methodology, we present results of a detailed evaluation on a standard benchmark dataset and we show that the consideration of multi-scale, multi-type neighbourhoods as the basis for feature extraction leads to improved classification results in comparison to single-scale neighbourhoods as well as in comparison to multi-scale neighbourhoods of the same type.

[1]  Uwe Soergel,et al.  CONDITIONAL RANDOM FIELDS for LIDAR POINT CLOUD CLASSIFICATION in COMPLEX URBAN AREAS , 2012 .

[2]  Chao Chen,et al.  Using Random Forest to Learn Imbalanced Data , 2004 .

[3]  Konrad Schindler,et al.  IMPLICIT SHAPE MODELS FOR OBJECT DETECTION IN 3D POINT CLOUDS , 2012, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences.

[4]  Martial Hebert,et al.  Contextual classification with functional Max-Margin Markov Networks , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[5]  Pushmeet Kohli,et al.  Spatial Inference Machines , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Fan Zhang,et al.  Classification of airborne laser scanning data using JointBoost , 2015 .

[7]  Federico Tombari,et al.  Unique Signatures of Histograms for Local Surface Description , 2010, ECCV.

[8]  Niloy J. Mitra,et al.  Estimating surface normals in noisy point cloud data , 2003, SCG '03.

[9]  Steffen Urban,et al.  Distinctive 2D and 3D features for automated large-scale scene analysis in urban areas , 2015, Comput. Graph..

[10]  J. Demantké,et al.  DIMENSIONALITY BASED SCALE SELECTION IN 3D LIDAR POINT CLOUDS , 2012 .

[11]  Uwe Soergel,et al.  Contextual Classification of Full Waveform Lidar Data in the Wadden Sea , 2014, IEEE Geoscience and Remote Sensing Letters.

[12]  Markus H. Gross,et al.  Multi‐scale Feature Extraction on Point‐Sampled Surfaces , 2003, Comput. Graph. Forum.

[13]  Uwe Soergel,et al.  Relevance assessment of full-waveform lidar data for urban area classification , 2011 .

[14]  Nico Blodow,et al.  Persistent Point Feature Histograms for 3D Point Clouds , 2008 .

[15]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[16]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[17]  J. Niemeyer,et al.  Contextual classification of lidar data and building object detection in urban areas , 2014 .

[18]  C. Mallet,et al.  AIRBORNE LIDAR FEATURE SELECTION FOR URBAN CLASSIFICATION USING RANDOM FORESTS , 2009 .

[19]  V. Wichmann,et al.  Eigenvalue and graph-based object extraction from mobile laser scanning point clouds , 2013 .

[20]  S. J. Oude Elberink,et al.  Multiple-entity based classification of airborne laser scanning data in urban areas , 2014 .

[21]  Impyeong Lee,et al.  PERCEPTUAL ORGANIZATION OF 3D SURFACE POINTS , 2002 .

[22]  James R. Lersch,et al.  Context-driven automated target detection in 3D data , 2004, SPIE Defense + Commercial Sensing.

[23]  Stefan Hinz,et al.  CONTEXTUAL CLASSIFICATION OF POINT CLOUD DATA BY EXPLOITING INDIVIDUAL 3D NEIGBOURHOODS , 2015 .

[24]  Jitendra Malik,et al.  Recognizing Objects in Range Data Using Regional Point Descriptors , 2004, ECCV.

[25]  Martin Weinmann,et al.  Book Review–Reconstruction and Analysis of 3D Scenes: From Irregularly Distributed 3D Points to Object Classes , 2016, Photogrammetric Engineering & Remote Sensing.

[26]  Hartmut Prautzsch,et al.  Local Versus Global Triangulations , 2001, Eurographics.

[27]  N. Pfeifer,et al.  Neighborhood systems for airborne laser data , 2005 .

[28]  S. J. Oude Elberink,et al.  Role of dimensionality reduction in segment - based classsification of damaged building roofs in ariborne laser scanning data , 2012 .

[29]  Roman Shapovalov,et al.  Cutting-Plane Training of Non-associative Markov Network for 3D Point Cloud Segmentation , 2011, 2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission.

[30]  Boris Jutzi,et al.  Feature relevance assessment for the semantic interpretation of 3D point cloud data , 2013 .

[31]  Markus Vincze,et al.  Ensemble of shape functions for 3D object classification , 2011, 2011 IEEE International Conference on Robotics and Biomimetics.

[32]  David P. Helmbold,et al.  Aerial Lidar Data Classification using AdaBoost , 2007, Sixth International Conference on 3-D Digital Imaging and Modeling (3DIM 2007).

[33]  Martial Hebert,et al.  Directional Associative Markov Network for 3-D Point Cloud Classification , 2008 .

[34]  George Vosselman,et al.  Recognizing basic structures from mobile laser scanning data for road inventory studies , 2011 .

[35]  Dimitri Lague,et al.  3D Terrestrial LiDAR data classification of complex natural scenes using a multi-scale dimensionality criterion: applications in geomorphology , 2011, ArXiv.

[36]  O. Barinova,et al.  NON-ASSOCIATIVE MARKOV NETWORKS FOR 3D POINT CLOUD CLASSIFICATION , 2010 .

[37]  Martial Hebert,et al.  Efficient 3-D scene analysis from streaming data , 2013, 2013 IEEE International Conference on Robotics and Automation.

[38]  G. Sithole,et al.  Recognising structure in laser scanning point clouds , 2004 .

[39]  Andy Liaw,et al.  Classification and Regression by randomForest , 2007 .

[40]  Stefan Hinz,et al.  Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers , 2015 .

[41]  Radu Bogdan Rusu,et al.  Semantic 3D Object Maps for Everyday Manipulation in Human Living Environments , 2010, KI - Künstliche Intelligenz.

[42]  Boris Jutzi,et al.  SHAPE DISTRIBUTION FEATURES FOR POINT CLOUD ANALYSIS - A GEOMETRIC HISTOGRAM APPROACH ON MULTIPLE SCALES , 2014 .

[43]  Martial Hebert,et al.  Scale selection for classification of point-sampled 3D surfaces , 2005, Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05).

[44]  Andrew E. Johnson,et al.  Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  Martial Hebert,et al.  3-D scene analysis via sequenced predictions over points and regions , 2011, 2011 IEEE International Conference on Robotics and Automation.

[46]  Bernard Chazelle,et al.  Shape distributions , 2002, TOGS.

[47]  D. Lichti,et al.  CLASSIFICATION AND SEGMENTATION OF TERRESTRIAL LASER SCANNER POINT CLOUDS USING LOCAL VARIANCE INFORMATION , 2006 .