A 10/24-GHz CMOS/IPD Monopulse Receiver for Angle-Discrimination Radars

A new 10/24-GHz monopulse receiver is developed in this paper. The receiver consists of dual-band or broadband circuits such as low-noise amplifiers, a rat-race coupler, a switch, and mixers. These circuits are fabricated by a standard 0.18- μm CMOS or an integrated passive device (IPD) technology, and are integrated together in a flip-chip form. The overall chip area is 3.8 mm × 3.6 mm. With power consumption of 90.6 mW, the receiver results in 16.5/6.9-dB gain, 9.2/14.6-dB noise figure, -22.3/ -23.7-dBminput P1 dB, and 23.6/21.5-dB sum/difference amplitude ratio in the 10/24-GHz bands. Moreover, the monopulse measurement also demonstrates ±15° angle discrimination in the two bands. To authors' knowledge, this is the first demonstration of an original dual-band CMOS monopulse receiver architecture for angle detection applications.

[1]  Sen Wang,et al.  A 6-32GHz T/R switch in 0.18-µm CMOS technology , 2012, IEICE Electron. Express.

[2]  T. Nakamura,et al.  A 77 GHz T/R MMIC chip set for automotive radar systems , 1997, GaAs IC Symposium. IEEE Gallium Arsenide Integrated Circuit Symposium. 19th Annual Technical Digest 1997.

[3]  K.-K.M. Cheng,et al.  A novel rat race coupler design for dual-band applications , 2005, IEEE Microwave and Wireless Components Letters.

[4]  Yu Cao,et al.  Frequency-independent equivalent circuit model for on-chip spiral inductors , 2002, Proceedings of the IEEE 2002 Custom Integrated Circuits Conference (Cat. No.02CH37285).

[5]  Da-Chiang Chang,et al.  Low Phase Noise and Low Power Consumption VCOs Using CMOS and IPD Technologies , 2011, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[6]  H. Kondoh,et al.  24GHz Intruder Detection Radar with Beam-switched Area Coverage , 2007, 2007 IEEE/MTT-S International Microwave Symposium.

[7]  J. Long,et al.  The modeling, characterization, and design of monolithic inductors for silicon RF IC's , 1997, IEEE J. Solid State Circuits.

[8]  Da-Chiang Chang,et al.  CMOS wideband LNA design using integrated passive device , 2009, 2009 IEEE MTT-S International Microwave Symposium Digest.

[9]  L.H.E. Smit The analysis and design of a stripline monopulse comparator using equivalent circuits and mode matching techniques , 1996, Proceedings of IEEE. AFRICON '96.

[10]  Liang-Hung Lu,et al.  A compact 2.4/5.2-GHz CMOS dual-band low-noise amplifier , 2005 .

[11]  Yi-Jan Emery Chen,et al.  A 77-GHz CMOS Automotive Radar Transceiver With Anti-Interference Function , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[12]  Chao-Wei Wang,et al.  A K-band CMOS monopulse comparator incorporating the phase-invertible variable attenuator , 2013, 2013 IEEE 13th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems.

[13]  P. Heydari,et al.  A Single-Chip Dual-Band 22–29-GHz/77–81-GHz BiCMOS Transceiver for Automotive Radars , 2009, IEEE Journal of Solid-State Circuits.

[14]  Andrea Bevilacqua,et al.  Integrated SFCW Transceivers for UWB Breast Cancer Imaging: Architectures and Circuit Constraints , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[15]  Yuanxun Ethan Wang,et al.  A $Ka$-Band FMCW Radar Front-End With Adaptive Leakage Cancellation , 2006, IEEE Transactions on Microwave Theory and Techniques.

[16]  Ke Wu,et al.  On the Leakage of FMCW Radar Front-End Receiver , 2008, 2008 Global Symposium on Millimeter Waves.

[17]  Reinhard Feger,et al.  A Fully-Integrated 77-GHz UWB Pseudo-Random Noise Radar Transceiver With a Programmable Sequence Generator in SiGe Technology , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[18]  Hsien-Shun Wu,et al.  Propagation characteristics of wide synthetic quasi-TEM transmission line , 2005, IEEE MTT-S International Microwave Symposium Digest, 2005..

[19]  Jeong-Geun Kim,et al.  A 24 GHz Amplitude Monopulse Comparator in 0.13 $\mu$m CMOS , 2008, IEEE Microwave and Wireless Components Letters.

[20]  N.S. Barker,et al.  An octave bandwidth monopulse processor , 1997, 1997 IEEE MTT-S International Microwave Symposium Digest.

[21]  Lei Zhou,et al.  A Single-Chip Dual-Band 22-29-GHz/77-81-GHz BiCMOS Transceiver for Automotive Radars , 2009, IEEE J. Solid State Circuits.

[22]  T. Adachi,et al.  A 24GHz Low-Cost, Long-Range, Narrow-Band, Monopulse Radar Front End System for Automotive ACC Applications , 2007, 2007 IEEE/MTT-S International Microwave Symposium.

[23]  M. Riessle,et al.  Compact single-chip W-band FMCW radar modules for commercial high-resolution sensor applications , 2002 .

[24]  Jeng-Han Tsai,et al.  Design of 40–108-GHz Low-Power and High-Speed CMOS Up-/Down-Conversion Ring Mixers for Multistandard MMW Radio Applications , 2012, IEEE Transactions on Microwave Theory and Techniques.

[25]  T. Harada,et al.  Phase-comparison monopulse radar with switched transmit beams for automotive application , 1999, 1999 IEEE MTT-S International Microwave Symposium Digest (Cat. No.99CH36282).

[26]  Sen Wang,et al.  Design of $X$ -Band RF CMOS Transceiver for FMCW Monopulse Radar , 2009, IEEE Transactions on Microwave Theory and Techniques.

[27]  Yong-Hui Shu,et al.  W-band integrated monopulse radar transceiver , 1995, Proceedings of 1995 IEEE MTT-S International Microwave Symposium.

[28]  Sen Wang,et al.  A miniaturized 10/24-GHz rat-race coupler using synthetic transmission lines on glass substrate , 2011, IEICE Electron. Express.

[29]  Ta-Shun Chu,et al.  A UWB Impulse-Radio Timed-Array Radar With Time-Shifted Direct-Sampling Architecture in 0.18-$\mu{\rm m}$ CMOS , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[30]  I. Gresham,et al.  Ultra-wideband radar sensors for short-range vehicular applications , 2004, IEEE Transactions on Microwave Theory and Techniques.