Comparison of GRACE data and groundwater levels for the assessment of groundwater depletion in Jordan

Gravity Recovery and Climate Experiment (GRACE) derived groundwater storage (GWS) data are compared with in-situ groundwater levels from five groundwater basins in Jordan, using newly gridded GRACE GRCTellus land data. It is shown that (1) the time series for GRACE-derived GWS data and in-situ groundwater-level measurements can be correlated, with R2 from 0.55 to 0.74, (2) the correlation can be widely ascribed to the seasonal and trend component, since the detrended and deseasonalized time series show no significant correlation for most cases, implying that anomalous signals that deviate from the trend or seasonal behaviour are overlaid by noise, (3) estimates for water losses in Jordan based on the trend of GRACE data from 2003 to 2013 could be up to four times higher than previously assumed using estimated recharge and abstraction rates, and (4) a significant time-lagged cross correlation of the monthly changes in GRACE-derived groundwater storage and precipitation data was found, suggesting that the conventional method for deriving GWS from GRACE data probably does not account for the typical conditions in the study basins. Furthermore, a new method for deriving plausible specific yields from GRACE data and groundwater levels is demonstrated.RésuméLes données des réserves d’eau souterraine issues du système GRACE (Gravity Recovery and Climate Experiment) sont comparées avec les données piézométriques mesurées in-situ dans cinq bassins hydrogéologiques en Jordanie, en utilisant une nouvelle grille de données GRSTellusland du système GRACE. Il a été montré que (1) les séries temporelles des données de la réserve en eau souterraine issues du système GRACE et les mesures piézométriques in-situ peuvent être corrélées, avec un coefficient R2 compris entre 0.55 et 0.74, (2) la corrélation peut être largement attribuée à la composante tendancielle et saisonnière, puisque les séries temporelles défaites de la tendance et désaisonnalisées ne montrent pas de corrélation significative dans la plupart des cas, ce qui indique que les signaux d’anomalies qui s’écartent de la tendance ou du comportement saisonnier sont couverts par le bruit de fond, (3) les estimations pour les pertes d’eau en Jordanie basées sur la tendance des données de GRACE de 2003 à 2013 pourraient être plus de quatre fois supérieures aux estimations antérieures de recharge et de taux de prélèvement, et (4) une importante corrélation croisée décalée dans le temps des variations mensuelles du stock d’eau souterraine dérivé des données de GRACE et des données de précipitations a été mise en évidence, suggérant que la méthode conventionnelle pour évaluer les réserves en eau souterraine à partir des données de GRACE ne tient probablement pas compte des conditions spécifiques des bassins étudiés. De plus, une nouvelle méthode pour dériver des productivités spécifiques plausibles à partir des données de GRACE et des niveaux piézométriques est démontrée.ResumenSe comparan los datos derivados del almacenamiento de agua subterránea (GWS) del Gravity Recovery and Climate Experiment (GRACE) con los niveles de agua subterránea medidos in situ en cinco cuencas de aguas subterráneas en Jordania, utilizando los datos de GRACE GRCTellus reticulados recientemente. Se muestra que (1) la serie temporal de datos de GWS derivados de GRACE y las mediciones in situ del nivel del agua subterránea se pueden correlacionar con R2 a partir 0.55 a 0.74; (2) la correlación puede ser ampliamente atribuida a la componente estacional y a la tendencia , ya que la serie de tiempo desestacionalizada y sin tendencia no muestra ninguna correlación significativa en la mayoría de los casos, lo que implica que las señales anómalas que se apartan de la tendencia o comportamiento estacional, se superponen con el ruido, (3) las pérdidas de agua estimadas en Jordania sobre la base de la tendencia de los datos de GRACE 2003–2013 podría ser hasta cuatro veces mayor de lo que se supone usando las tasas de recarga y de extracción estimados, y (4) la correlación cruzada encontró que un tiempo significativo de retardo entre la variaciones mensuales de almacenamiento de agua subterránea derivada de GRACE y datos de precipitación, lo que sugiere que el método convencional para derivar GWS de los datos de GRACE, probablemente, no tiene en cuenta las condiciones típicas en las cuencas de estudio. Por otra parte, se muestra un nuevo método para derivar los posibles rendimientos específicos a partir de los datos de GRACE y de los niveles del agua subterránea.摘要利用新划分网格的GRACE GRCTellus土地数据,对GRACE导出的地下水储存数据和约旦5个地下水盆地现场的地下水位进行了对比。结果显示,(1)GRACE导出的地下水储存数据和现场地下水位测量结果的时间序列可以相互关联,R2的范围为0.55 到 0.74,(2)关联性广泛归因于季节性和趋势因素,因为大多数情况下去趋势化的和消除季节的时间序列没有显示出多大的关联性,意味着偏离趋势和季节性行为的异常信号被噪音覆盖,(3)根据2003年到2013年GRACE数据趋势得到的约旦水损耗估算结果可能是先前采用估算的补给和抽取率假设的结果的4倍,(4)发现GRACE导出的地下水储存量和降水数据月度变化有重要的时间延迟相互关联性,表明从GRACE数据导出地下水储存量的常规方法可能解释不了研究区的典型情况。此外,本文还论述了从GRACE数据和地下水位导出似乎可信的单位出水量的一种新方法。ResumoDados de armazenamento de água subterrânea (AAS) derivados do satélite GRACE (Gravity Recovery and Climate Experiment) foram comparados com níveis de água subterrânea in-loco de cinco bacias subterrâneas na Jordânia. Utilizaram-se os novos dados em grade do GRACE (GRCTellus). Mostra-se que (1) as séries temporais para os dados de AAS derivados do GRACE e as medições in-loco de níveis de água subterrânea podem ser correlacionadas, com 0.55 ≤ R2 ≤ 0.74, (2) a correlação pode ser largamente atribuída às componentes de tendência e sazonalidade, uma vez que as séries temporais após remoção de tendência e sazonalidade não apresentam correlação significativa na maioria dos casos, indicando que sinais anômalos que desviam da tendência ou do comportamento sazonal são sobrepostos por ruído, (3) estimativas para perda de água na Jordânia baseadas em tendências de dados GRACE de 2003 a 2013 podem ser até quatro vezes maiores que as previamente assumidas utilizando a recarga estimada e taxas de abstração, e (4) uma significante correlação cruzada defasada no tempo entre mudanças mensais no armazenamento de água subterrânea derivada do GRACE e dados de precipitação foi encontrada, sugerindo que o método convencional para derivar AAS a partir de dados GRACE provavelmente não considera condições típicas da área de estudo. Além disso, um novo método para derivar rendimentos específicos plausíveis a partir de dados GRACE e níveis das águas subterrâneas é demonstrado.

[1]  C. Granger,et al.  Spurious regressions in econometrics , 1974 .

[2]  P. Döll,et al.  Groundwater use for irrigation - a global inventory , 2010 .

[3]  Victor Zlotnicki,et al.  Time‐variable gravity from GRACE: First results , 2004 .

[4]  J. Aldrich Correlations Genuine and Spurious in Pearson and Yule , 1995 .

[5]  Taikan Oki,et al.  Role of rivers in the seasonal variations of terrestrial water storage over global basins , 2009 .

[6]  B. Scanlon,et al.  GRACE Hydrological estimates for small basins: Evaluating processing approaches on the High Plains Aquifer, USA , 2010 .

[7]  Wenji Zhao,et al.  Subregional‐scale groundwater depletion detected by GRACE for both shallow and deep aquifers in North China Plain , 2015 .

[8]  S. Swenson,et al.  Remote sensing of groundwater storage changes in Illinois using the Gravity Recovery and Climate Experiment (GRACE) , 2006 .

[9]  F. Landerer,et al.  Accuracy of scaled GRACE terrestrial water storage estimates , 2012 .

[10]  D. Jiang,et al.  The Review of GRACE Data Applications in Terrestrial Hydrology Monitoring , 2014 .

[11]  Integration of Water Resources of the Upper Aquifer in Amman-Zarqa Basin Based on Mathematical Modeling and GIS, Jordan , 2005 .

[12]  Petra Döll,et al.  Seasonal Water Storage Variations as Impacted by Water Abstractions: Comparing the Output of a Global Hydrological Model with GRACE and GPS Observations , 2014, Surveys in Geophysics.

[13]  R. Koster,et al.  Assessment and Enhancement of MERRA Land Surface Hydrology Estimates , 2011 .

[14]  D. Chambers,et al.  GRACE, time-varying gravity, Earth system dynamics and climate change , 2014, Reports on progress in physics. Physical Society.

[15]  Mohamed Sultan,et al.  The use of GRACE data to monitor natural and anthropogenic induced variations in water availability across Africa , 2014 .

[16]  Khaled H. Hamed,et al.  A modified Mann-Kendall trend test for autocorrelated data , 1998 .

[17]  J. Famiglietti,et al.  Satellite-based estimates of groundwater depletion in India , 2009, Nature.

[18]  W. Feng,et al.  Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground‐based measurements , 2013 .

[19]  S. Swenson,et al.  Satellites measure recent rates of groundwater depletion in California's Central Valley , 2011 .

[20]  Jiu Jimmy Jiao,et al.  Calibration of a large-scale groundwater flow model using GRACE data: a case study in the Qaidam Basin, China , 2015, Hydrogeology Journal.

[21]  S. Bettadpur,et al.  Ensemble prediction and intercomparison analysis of GRACE time‐variable gravity field models , 2014 .

[22]  J. Fisher,et al.  Challenges and Opportunities in GRACE-Based Groundwater Storage Assessment and Management: An Example from Yemen , 2012, Water Resources Management.

[23]  Y. Hong,et al.  The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales , 2007 .

[24]  Bridget R. Scanlon,et al.  GRACE water storage estimates for the Middle East and other regions with significant reservoir and lake storage , 2012 .

[25]  S. Swenson,et al.  Estimating the human contribution to groundwater depletion in the Middle East, from GRACE data, land surface models, and well observations , 2014 .

[26]  J. Durbin,et al.  Testing for serial correlation in least squares regression. I. , 1950, Biometrika.

[27]  P. J. Chilton,et al.  Groundwater and its susceptibility to degradation : a global assessment of the problem and options for management , 2003 .

[28]  U. Dayan,et al.  A severe autumn storm over the middle-east: synoptic and mesoscale convection analysis , 2001 .

[29]  S. Swenson,et al.  A comparison of terrestrial water storage variations from GRACE with in situ measurements from Illinois , 2006 .

[30]  J. Famiglietti,et al.  Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE , 2007 .

[31]  Armin Margane,et al.  Contributions to the Hydrogeology of Northern and Central - Jordan , 2002 .

[32]  L. V. Beek,et al.  Water balance of global aquifers revealed by groundwater footprint , 2012, Nature.

[33]  Alexander Y. Sun,et al.  Toward calibration of regional groundwater models using GRACE data , 2012 .

[34]  Irma J. Terpenning,et al.  STL : A Seasonal-Trend Decomposition Procedure Based on Loess , 1990 .

[35]  J. Durbin,et al.  Testing for serial correlation in least squares regression. II. , 1950, Biometrika.

[36]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[37]  V. M. Tiwari,et al.  Dwindling groundwater resources in northern India, from satellite gravity observations , 2009 .

[38]  M. Giordano Global Groundwater? Issues and Solutions , 2009 .

[39]  S. Schubert,et al.  MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications , 2011 .

[40]  Hongliang Fang,et al.  Global Land Data Assimilation System (GLDAS) Products, Services and Application from NASA Hydrology Data and Information Services Center (HDISC) , 2009 .

[41]  Juana Paul Moiwo,et al.  Comparison of GRACE with in situ hydrological measurement data shows storage depletion in Hai River basin, Northern China , 2009 .

[42]  K. Hipel,et al.  Time series modelling of water resources and environmental systems , 1994 .

[43]  Marc Leblanc,et al.  Groundwater depletion in the Hai River Basin, China, from in situ and GRACE observations , 2015 .

[44]  Ernst J. O. Schrama,et al.  Identifying water mass depletion in northern Iraq observed by GRACE , 2014 .

[45]  U. Dayan,et al.  Heavy Rain in the Middle East Related to Unusual Jet Stream Properties , 1983 .

[46]  A. Kirilenko,et al.  Significance of surface water in the terrestrial water budget: A case study in the Prairie Coteau using GRACE, GLDAS, Landsat, and groundwater well data , 2013 .

[47]  R. Houborg,et al.  Drought indicators based on model‐assimilated Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage observations , 2012 .

[48]  Matthew Rodell,et al.  An analysis of terrestrial water storage variations in Illinois with implications for the Gravity Recovery and Climate Experiment (GRACE) , 2001 .

[49]  Joseph L. Awange,et al.  Characterization of Ethiopian mega hydrogeological regimes using GRACE, TRMM and GLDAS datasets , 2014 .

[50]  Jeffrey P. Walker,et al.  THE GLOBAL LAND DATA ASSIMILATION SYSTEM , 2004 .

[51]  S. Swenson,et al.  Post‐processing removal of correlated errors in GRACE data , 2006 .

[52]  B. Scanlon,et al.  Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA , 2012 .

[53]  B. Scanlon,et al.  Comparison of seasonal terrestrial water storage variations from GRACE with groundwater‐level measurements from the High Plains Aquifer (USA) , 2007 .

[54]  P. Moore,et al.  Integration of altimetric lake levels and GRACE gravimetry over Africa: Inferences for terrestrial water storage change 2003–2011 , 2014 .

[55]  M. Inbar Episodes of flash floods and boulder transport in the Upper Jordan River , 2000 .

[56]  S. Swenson,et al.  Uncertainty in global groundwater storage estimates in a Total Groundwater Stress framework , 2015, Water resources research.

[57]  G. Yule Why do we Sometimes get Nonsense-Correlations between Time-Series?--A Study in Sampling and the Nature of Time-Series , 1926 .

[58]  Bridget R. Scanlon,et al.  Evaluation of groundwater storage monitoring with the GRACE satellite: Case study of the High Plains aquifer, central United States , 2009 .