暂无分享,去创建一个
[1] Franz Baader,et al. Cardinality Restrictions on Concepts , 1994, KI.
[2] Christos H. Papadimitriou,et al. A linear programming approach to reasoning about probabilities , 1990, Annals of Mathematics and Artificial Intelligence.
[3] Armin Biere. Lingeling Essentials, A Tutorial on Design and Implementation Aspects of the the SAT Solver Lingeling , 2014, POS@SAT.
[4] Joost P. Warners,et al. A Linear-Time Transformation of Linear Inequalities into Conjunctive Normal Form , 1998, Inf. Process. Lett..
[5] A. Mostowski. On a generalization of quantifiers , 1957 .
[6] P. Walley,et al. Direct algorithms for checking consistency and making inferences from conditional probability assessments , 2004 .
[7] Marcelo Finger,et al. Probabilistic Satisfiability: Logic-Based Algorithms and Phase Transition , 2011, IJCAI.
[8] Diego Calvanese,et al. DL-Lite: Tractable Description Logics for Ontologies , 2005, AAAI.
[9] Franz Baader,et al. Pushing the EL Envelope , 2005, IJCAI.
[10] Kenneth Steiglitz,et al. Combinatorial Optimization: Algorithms and Complexity , 1981 .
[11] Martin Otto,et al. On Logics with Two Variables , 1999, Theor. Comput. Sci..
[12] Marcelo Finger,et al. Probably Half True: Probabilistic Satisfiability over Łukasiewicz Infinitely-Valued Logic , 2018, IJCAR.
[13] B. D. Finetti. La prévision : ses lois logiques, ses sources subjectives , 1937 .
[14] Tommaso Flaminio,et al. The coherence of Lukasiewicz assessments is NP-complete , 2010, Int. J. Approx. Reason..
[15] J. Eckhoff. Helly, Radon, and Carathéodory Type Theorems , 1993 .
[16] Gai CarSO. A Logic for Reasoning about Probabilities * , 2004 .
[17] Marcelo Finger,et al. Algorithms for Deciding Counting Quantifiers over Unary Predicates , 2017, AAAI.
[18] D. Mundici,et al. Algebraic Foundations of Many-Valued Reasoning , 1999 .
[19] Phokion G. Kolaitis,et al. On the Decision Problem for Two-Variable First-Order Logic , 1997, Bulletin of Symbolic Logic.
[20] B. D. Finetti,et al. Theory of Probability: A Critical Introductory Treatment , 2017 .
[21] George Boole,et al. An Investigation of the Laws of Thought: Frontmatter , 2009 .
[22] Ian Pratt-Hartmann. On the Computational Complexity of the Numerically Definite Syllogistic and Related Logics , 2008, Bull. Symb. Log..
[23] Marcelo Finger,et al. Probabilistic satisfiability: algorithms with the presence and absence of a phase transition , 2015, Annals of Mathematics and Artificial Intelligence.
[24] Marcelo Finger,et al. Measuring inconsistency in probabilistic logic: rationality postulates and Dutch book interpretation , 2015, Artif. Intell..
[25] Fabio Gagliardi Cozman,et al. Towards classifying propositional probabilistic logics , 2014, J. Appl. Log..
[26] D. Mundici,et al. A Rényi Conditional in Łukasiewicz Logic , 2011 .
[27] Barnaby Martin,et al. Constraint Satisfaction with Counting Quantifiers , 2012, CSR.
[28] Alfred Tarski,et al. Measures in Boolean algebras , 1948 .
[29] Niklas Sörensson,et al. An Extensible SAT-solver , 2003, SAT.
[30] Daniele Mundici,et al. Bookmaking over infinite-valued events , 2006, Int. J. Approx. Reason..
[31] Daniele Pretolani,et al. Easy Cases of Probabilistic Satisfiability , 2001, Annals of Mathematics and Artificial Intelligence.
[32] Ian Pratt-Hartmann. Complexity of the Two-Variable Fragment with Counting Quantifiers , 2005, J. Log. Lang. Inf..
[33] D. Mundici. Advanced Łukasiewicz calculus and MV-algebras , 2011 .
[34] Pierre Hansen,et al. Models and Algorithms for Probabilistic and Bayesian Logic , 1995, IJCAI.
[35] Perlindström. First Order Predicate Logic with Generalized Quantifiers , 1966 .
[36] Pierre Hansen,et al. Column Generation Methods for Probabilistic Logic , 1989, INFORMS J. Comput..
[37] Ndrei,et al. Galois correspondence for counting quantifiers , 2013 .
[38] David K. Smith. Theory of Linear and Integer Programming , 1987 .
[39] John N. Tsitsiklis,et al. Introduction to linear optimization , 1997, Athena scientific optimization and computation series.
[40] Theodore Hailperin,et al. Boole's logic and probability , 1976 .
[41] B. Finetti. Sul significato soggettivo della probabilità , 1931 .
[42] Nils J. Nilsson,et al. Probabilistic Logic * , 2022 .
[43] Niklas Sörensson,et al. Translating Pseudo-Boolean Constraints into SAT , 2006, J. Satisf. Boolean Model. Comput..
[44] Christos H. Papadimitriou,et al. Probabilistic satisfiability , 1988, J. Complex..
[45] B. D. Finetti,et al. Foresight: Its Logical Laws, Its Subjective Sources , 1992 .