Conformal mappings to achieve simple material parameters for transformation optics devices.

The transformation optics technique for designing novel electromagnetic and optical devices offers great control over wave behavior, but is difficult to implement primarily due to limitations in current metamaterial design and fabrication techniques. This paper demonstrates that restricting the spatial transformation to a conformal mapping can lead to much simpler material parameters for more practical implementation. As an example, a flat cylindrical-to-plane-wave conversion lens is presented and its performance validated through numerical simulations. It is shown that the lens dimensions and embedded source location can be adjusted to produce one, two, or four highly directive planar beams. Two metamaterial designs for this lens that implement the required effective medium parameters are proposed and their behavior analyzed.

[1]  J. Pendry,et al.  Hiding under the carpet: a new strategy for cloaking. , 2008, Physical review letters.

[2]  Francisco Medina,et al.  Role of bianisotropy in negative permeability and left-handed metamaterials , 2002 .

[3]  D. Smith,et al.  Optical lens compression via transformation optics. , 2009, Optics express.

[4]  Do-Hoon Kwon,et al.  Beam Scanning Using Flat Transformation Electromagnetic Focusing Lenses , 2009, IEEE Antennas and Wireless Propagation Letters.

[5]  David R. Smith,et al.  Electric-field-coupled resonators for negative permittivity metamaterials , 2006 .

[6]  D. Werner,et al.  Transformation optical designs for wave collimators, flat lenses and right-angle bends , 2008 .

[7]  T. Cui,et al.  Cylindrical-to-plane-wave conversion via embedded optical transformation , 2008 .

[8]  G. Tayeb,et al.  A metamaterial for directive emission. , 2002, Physical review letters.

[9]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[10]  Willie J Padilla,et al.  Guiding light with conformal transformations. , 2009, Optics express.

[11]  J. Pendry,et al.  Perfect cylindrical lenses. , 2003, Optics express.

[12]  M. Qiu,et al.  Cylindrical invisibility cloak with simplified material parameters is inherently visible. , 2007, Physical review letters.

[13]  M. Qiu,et al.  Ideal cylindrical cloak: perfect but sensitive to tiny perturbations. , 2007, Physical review letters.

[14]  David R. Smith,et al.  Full-wave simulations of electromagnetic cloaking structures. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Transformation optics for the full dielectric electromagnetic cloak and metal-dielectric planar hyperlens , 2008 .

[16]  Ulf Leonhardt,et al.  General relativity in electrical engineering , 2006, SPIE Optics + Optoelectronics.

[17]  Zubin Jacob,et al.  Impedance matched hyperlens , 2008 .

[18]  J. Pendry,et al.  Calculation of material properties and ray tracing in transformation media. , 2006, Optics express.

[19]  D. Werner,et al.  Flat focusing lens designs having minimized reflection based on coordinate transformation techniques. , 2009, Optics express.

[20]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[21]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[22]  David R. Smith,et al.  Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations , 2007, 0706.2452.

[23]  Vladimir M. Shalaev,et al.  Optical cloaking with metamaterials , 2006, physics/0611242.