Sensitivity to change in perception of speech

Perceptual systems in all modalities are predominantly sensitive to stimulus change, and many examples of perceptual systems responding to change can be portrayed as instances of enhancing contrast. Multiple findings from perception experiments serve as evidence for spectral contrast explaining fundamental aspects of perception of coarticulated speech, and these findings are consistent with a broad array of known psychoacoustic and neurophysiological phenomena. Beyond coarticulation, important characteristics of speech perception that extend across broader spectral and temporal ranges may best be accounted for by the constant calibration of perceptual systems to maximize sensitivity to change.

[1]  Gerald Langner,et al.  Coding of temporal patterns in the central auditory nervous system , 1988 .

[2]  A. Lotto,et al.  Neighboring spectral content influences vowel identification. , 2000, The Journal of the Acoustical Society of America.

[3]  A. J. Watkins,et al.  Some effects of filtered contexts on the perception of vowels and fricatives. , 1996, The Journal of the Acoustical Society of America.

[4]  C. Schreiner,et al.  Thalamocortical transformation of responses to complex auditory stimuli , 2004, Experimental Brain Research.

[5]  A. King,et al.  Auditory function: Neurobiological bases of hearing G.M. Edelman W.E. , 1990, Neuroscience.

[6]  S. Öhman Coarticulation in VCV Utterances: Spectrographic Measurements , 1966 .

[7]  Bertrand Delgutte,et al.  Auditory Neural Processing of Speech , 2002 .

[8]  T. Houtgast Psychophysical evidence for lateral inhibition in hearing. , 1972, The Journal of the Acoustical Society of America.

[9]  B. Delgutte,et al.  Speech coding in the auditory nerve: IV. Sounds with consonant-like dynamic characteristics. , 1984, The Journal of the Acoustical Society of America.

[10]  R. Frisina,et al.  Sensitivity of auditory-nerve fibers to changes in intensity: a dichotomy between decrements and increments. , 1985, The Journal of the Acoustical Society of America.

[11]  J M Festen,et al.  Relations between auditory functions in normal hearing. , 1981, The Journal of the Acoustical Society of America.

[12]  Dennis H. Klatt,et al.  Software for a cascade/parallel formant synthesizer , 1980 .

[13]  A. B.,et al.  SPEECH COMMUNICATION , 2001 .

[14]  J J Zwislocki,et al.  Responses of some neurons of the cochlear nucleus to tone-intensity increments. , 1971, The Journal of the Acoustical Society of America.

[15]  Carol A. Fowler,et al.  Young infants’ perception of liquid coarticulatory influences on following stop consonants , 1990, Perception & psychophysics.

[16]  Hudson Hoagland,et al.  QUANTITATIVE ASPECTS OF CUTANEOUS SENSORY ADAPTATION. I , 1933, The Journal of general physiology.

[17]  J D HOOD,et al.  Studies in auditory fatigue and adaptation. , 1950, Acta oto-laryngologica. Supplementum.

[18]  Q. Summerfield,et al.  Auditory enhancement of changes in spectral amplitude. , 1987, The Journal of the Acoustical Society of America.

[19]  A. Lotto,et al.  Perceptual compensation for coarticulation by Japanese quail (Coturnix coturnix japonica). , 1997, The Journal of the Acoustical Society of America.

[20]  Gerald M. Edelman,et al.  Auditory function : neurobiological bases of hearing , 1988 .

[21]  B. Delgutte Representation of speech-like sounds in the discharge patterns of auditory-nerve fibers. , 1979, The Journal of the Acoustical Society of America.

[22]  David A. Booth,et al.  The perception of odors, T. Engen. Academic Press, New York (1982), 202, £18·50. $27·50 , 1983 .

[23]  S. Ohman Coarticulation in VCV utterances: spectrographic measurements. , 1966, The Journal of the Acoustical Society of America.

[24]  M. Studdert-Kennedy,et al.  On the role of formant transitions in vowel recognition. , 1967, The Journal of the Acoustical Society of America.

[25]  Christman Rj,et al.  Shifts in pitch as a function of prolonged stimulation with pure tones. , 1954 .

[26]  T. M. Nearey Static, dynamic, and relational properties in vowel perception. , 1989, The Journal of the Acoustical Society of America.

[27]  Karl M. Dallenbach,et al.  Gustatory Adaptation to Salt , 1937 .

[28]  Keith R. Kluender,et al.  The role of spectral contrast in the perception of stop consonants following vowels and their spectral complements , 2001 .

[29]  N. Viemeister,et al.  Forward masking by enhanced components in harmonic complexes. , 1982, The Journal of the Acoustical Society of America.

[30]  H. Zwaardemaker,et al.  Die Physiologie des Geruchs , 1895 .

[31]  J. Laver,et al.  The handbook of phonetic sciences , 1999 .

[32]  E. F. Evans,et al.  Psychophysics and Physiology of Hearing , 1979 .

[33]  Kengo Ohgushi,et al.  A model of the Peripheral Auditory System , 1968 .

[34]  D Sutton,et al.  Relation of psychophysical data to histopathology in monkeys with cochlear implants. , 1981, Acta oto-laryngologica.

[35]  Q Summerfield,et al.  Perceiving vowels from uniform spectra: Phonetic exploration of an auditory aftereffect , 1984, Perception & psychophysics.

[36]  D Marr,et al.  Early processing of visual information. , 1976, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[37]  A. J. Watkins,et al.  Perceptual compensation for speaker differences and for spectral-envelope distortion. , 1994, The Journal of the Acoustical Society of America.

[38]  B. Moore,et al.  Suggested formulae for calculating auditory-filter bandwidths and excitation patterns. , 1983, The Journal of the Acoustical Society of America.

[39]  R L Smith,et al.  Adaptation, saturation, and physiological masking in single auditory-nerve fibers. , 1979, The Journal of the Acoustical Society of America.

[40]  Victor Urbantschitsch Beobachtungen über anomalien des Geschmacks der Tastempfindungen und der Speichelsecretion in Folge von Erkrankungen der Paukenhöhle , 1876 .

[41]  A. Lotto,et al.  General contrast effects in speech perception: Effect of preceding liquid on stop consonant identification , 1998, Perception & psychophysics.

[42]  J. C. R. Licklider,et al.  Detection of a Pulsed Sinusoid in Noise as a Function of Frequency , 1959 .

[43]  K. Kluender,et al.  Spectral tilt versus formant frequency in static and dynamic vowels , 2001 .

[44]  M Abeles,et al.  Responses of single units in the primary auditory cortex of the cat to tones and to tone pairs. , 1972, Brain research.

[45]  R. J. Christman,et al.  Shifts in pitch as a function of prolonged stimulation with pure tones. , 1954, The American journal of psychology.

[46]  Neal F. Viemeister,et al.  Adaptation of Masking , 1980 .

[47]  V. Mann Influence of preceding liquid on stop-consonant perception , 1980 .

[48]  Virginia A. Mann,et al.  Distinguishing universal and language-dependent levels of speech perception: Evidence from Japanese listeners' perception of English “l” and “r” , 1986, Cognition.

[49]  L. Riggs,et al.  The disappearance of steadily fixated visual test objects. , 1953, Journal of the Optical Society of America.

[50]  V. Mann,et al.  Influence of preceding fricative on stop consonant perception. , 1981, The Journal of the Acoustical Society of America.

[51]  B. Cardozo Ohm's Law and Masking , 1967 .

[52]  A. L. I︠A︡rbus Eye Movements and Vision , 1967 .

[53]  A. J. Watkins,et al.  Effects of spectral contrast on perceptual compensation for spectral-envelope distortion. , 1996, The Journal of the Acoustical Society of America.

[54]  V. Mann Influence of preceding liquid on stop-consonant perception. , 1980, Perception & psychophysics.

[55]  B. Lindblom Spectrographic Study of Vowel Reduction , 1963 .