Progress in experimental quantum digital signatures

There is ongoing research into information-theoretically secure digital signature schemes. Mathematically based approaches typically require additional resources such as anonymous broadcast and/or a trusted authority to achieve information-theoretical security. The principles of quantum mechanics can be applied to the problem to create the approach known as quantum digital signatures, which does not have these limitations. This presentation will provide an overview of the development of experimental quantum digital signatures. The evolution of experimental test-beds will be charted from small scale demonstrators to long distance implementations with commercial prototypes, along with overviews of the theoretical background of each stage.

[1]  Adetunmise C. Dada,et al.  Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities , 2011, 1104.5087.

[2]  Robert J. Collins,et al.  Commentary: New developments in single photon detection in the short wavelength infrared regime , 2010 .

[3]  Barenco,et al.  Conditional Quantum Dynamics and Logic Gates. , 1995, Physical review letters.

[4]  G. Buller,et al.  A short wavelength GigaHertz clocked fiber-optic quantum key distribution system , 2004, IEEE Journal of Quantum Electronics.

[5]  V. Dunjko,et al.  Quantum digital signatures with quantum-key-distribution components , 2014, 1403.5551.

[6]  M J García-Martínez,et al.  High-speed free-space quantum key distribution system for urban daylight applications. , 2013, Applied optics.

[7]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[8]  Yang Liu,et al.  Measurement-device-independent quantum key distribution over untrustful metropolitan network , 2015, 1509.08389.

[9]  R. Cleve,et al.  Quantum fingerprinting. , 2001, Physical review letters.

[10]  R. Collins,et al.  Single-Photon Detectors for Infrared Wavelengths in the Range 1–1.7 μm , 2014 .

[11]  R. Sillitto The Quantum Theory of Light , 1974 .

[12]  Adam Paszkiewicz,et al.  On quantum information , 2012, ArXiv.

[13]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[14]  V. Dunjko,et al.  Experimental demonstration of kilometer-range quantum digital signatures , 2015, 1509.07827.

[15]  C. Marquardt,et al.  Free-space quantum links under diverse weather conditions , 2017, 1707.04932.

[16]  P. J. Clarke,et al.  Realization of quantum digital signatures without the requirement of quantum memory. , 2013, Physical review letters.

[17]  J. Rarity,et al.  Enhanced single photon fringe visibility in a 10 km-long prototype quantum cryptography channel , 1993 .

[18]  E. Andersson,et al.  Experimentally realizable quantum comparison of coherent states and its applications , 2006, quant-ph/0601130.

[19]  Erika Andersson,et al.  Quantum digital signatures without quantum memory. , 2013, Physical review letters.

[20]  M. Curty,et al.  Measurement-device-independent quantum key distribution. , 2011, Physical review letters.

[21]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[22]  Masahide Sasaki,et al.  Experimental demonstration of quantum digital signatures over 43 dB channel loss using differential phase shift quantum key distribution , 2017, Scientific Reports.

[23]  A. Mink,et al.  Quantum key distribution with 1.25 Gbps clock synchronization , 2004, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[24]  A R Dixon,et al.  Field test of quantum key distribution in the Tokyo QKD Network. , 2011, Optics express.

[25]  Paul D. Townsend,et al.  Robust gigahertz fiber quantum key distribution , 2011 .

[26]  Jian-Wei Pan,et al.  Satellite-to-Ground Entanglement-Based Quantum Key Distribution. , 2017, Physical review letters.

[27]  Tian-Yin Wang,et al.  The postprocessing of quantum digital signatures , 2017, Quantum Inf. Process..

[28]  Somshubhro Bandyopadhyay,et al.  Conclusive exclusion of quantum states , 2013, 1306.4683.

[29]  Masahide Sasaki,et al.  Experimental transmission of quantum digital signatures over 90  km of installed optical fiber using a differential phase shift quantum key distribution system. , 2016, Optics letters.

[30]  R. Glauber Coherent and incoherent states of the radiation field , 1963 .

[31]  I. Chuang,et al.  Quantum Digital Signatures , 2001, quant-ph/0105032.

[32]  Juliane Jung,et al.  Brute Force Cracking The Data Encryption Standard , 2016 .

[33]  Masahide Sasaki,et al.  Multichannel SNSPD system with high detection efficiency at telecommunication wavelength. , 2010, Optics letters.

[34]  Gerald S. Buller,et al.  Ge-on-Si Single-Photon Avalanche Diode Detectors: Design, Modeling, Fabrication, and Characterization at Wavelengths 1310 and 1550 nm , 2013, IEEE Transactions on Electron Devices.

[35]  P. Wallden,et al.  Free-Space Quantum Signatures Using Heterodyne Measurements. , 2016, Physical review letters.

[36]  Hiroki Takesue,et al.  Differential-phase-shift quantum key distribution , 2009, 2006 Digest of the LEOS Summer Topical Meetings.

[37]  P. Jonsson,et al.  Key reconciliation in quantum key distribution , 2005 .

[38]  Philip Walther,et al.  Continuous‐Variable Quantum Key Distribution with Gaussian Modulation—The Theory of Practical Implementations , 2017, Advanced Quantum Technologies.

[39]  P. Townsend,et al.  Quantum key distribution over distances as long as 30 km. , 1995, Optics letters.

[40]  J. Kahn,et al.  1 Gbit/s PSK homodyne transmission system using phase-locked semiconductor lasers , 1989, IEEE Photonics Technology Letters.

[41]  K. Tamaki,et al.  Performance of Long-Distance Quantum Key Distribution Over 90-km Optical Links Installed in a Field Environment of Tokyo Metropolitan Area , 2014, Journal of Lightwave Technology.

[42]  Gregor Weihs,et al.  Quantum entanglement distribution with 810 nm photons through telecom fibers , 2010 .

[43]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[44]  J F Dynes,et al.  Experimental measurement-device-independent quantum digital signatures , 2017, Nature Communications.

[45]  Douglas R. Stinson,et al.  Cryptography: Theory and Practice , 1995 .

[46]  Yang Liu,et al.  Experimental measurement-device-independent quantum digital signatures over a metropolitan network , 2017, 1703.01021.

[47]  Anirban Pathak,et al.  Quantum Cryptography: Key Distribution and Beyond , 2017, 1802.05517.

[48]  Oded Goldreich,et al.  Foundations of Cryptography: Volume 2, Basic Applications , 2004 .

[49]  Jeongwan Jin,et al.  Airborne demonstration of a quantum key distribution receiver payload , 2016, 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[50]  Gerd Leuchs,et al.  Continuous-variable quantum key distribution using polarization encoding and post selection , 2004, quant-ph/0403064.

[51]  King,et al.  Demonstration of a fundamental quantum logic gate. , 1995, Physical review letters.

[52]  Robert J Collins,et al.  Experimental implementation of a quantum optical state comparison amplifier. , 2015, Physical review letters.

[53]  R. Collins,et al.  Single-photon generation and detection , 2009 .

[54]  Erika Andersson,et al.  Measurement-device-independent quantum digital signatures , 2016 .

[55]  P. J. Clarke,et al.  Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light , 2012, Nature communications.

[56]  Anthony Leverrier,et al.  Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation. , 2008, Physical review letters.

[57]  P. J. Clarke,et al.  Quantum key distribution system in standard telecommunications fiber using a short wavelength single photon source , 2010, 1004.4754.

[58]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..