Optimization of biotechnological processes. The acetic acid fermentation. Part III: Dynamic optimization

Wine vinegar is obtained in a biotechnological process one of the crucial steps in which is the biological oxidation of the starting wine. Such a step is usually performed in a semi-continuous operation mode where a preset fraction of the culture medium is unloaded from the fermenter as product and the remainder left in it as inoculum to facilitate expeditious fermentation of the wine subsequently added to replenish the amount withdrawn. The overall performance of the fermenter can vary markedly depending on the particular operating conditions, and so can the quality of the product and the economy of the process as a result. Identifying the most suitable operating conditions therefore poses a typical optimization problem named as dynamic optimization or open-loop optimal control, which is solved by determining the time profiles for the control variables of the system in order to optimize a given cost function. Such a function represents the goal to be achieved as regards the specific needs of the problem. In Part III of this series the previously proposed model in Parts I and II has been used for addressing the dynamic optimization of the acetic fermentation process in terms of various objective functions, with special emphasis on productivity.

[1]  Peter L. Douglas,et al.  Optimal feed rate profiles for fed-batch culture in penicillin production , 2005 .

[2]  Vassilios Vassiliadis,et al.  Computational solution of dynamic optimization problems with general differential-algebraic constraints , 1993 .

[3]  Mukul Agarwal,et al.  Batch unit optimization with imperfect modelling: a survey , 1994 .

[4]  R. Bellman Dynamic programming. , 1957, Science.

[5]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[6]  P. I. Barton,et al.  Dynamic optimization with state variable path constraints , 1998 .

[7]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[8]  Eugénio C. Ferreira,et al.  OPTIMISATION METHODS FOR IMPROVING FED-BATCH CULTIVATION OF E. COLI PRODUCING RECOMBINANT PROTEINS , 2002 .

[9]  Michel Perrier,et al.  Optimization of fed-batch culture of hybridoma cells using dynamic programming: single and multi feed cases , 1992 .

[10]  Arthur E. Bryson,et al.  Dynamic Optimization , 1998 .

[11]  Julio R. Banga,et al.  Stochastic Dynamic Optimization of Batch and Semicontinuous Bioprocesses , 1997 .

[12]  L. Biegler,et al.  Large-scale dynamic optimization for grade transitions in a low density polyethylene plant , 2002 .

[13]  L. Biegler,et al.  Large‐scale DAE optimization using a simultaneous NLP formulation , 1998 .

[14]  D. Himmelblau,et al.  Optimization of Chemical Processes , 1987 .

[15]  D. Himmelblau,et al.  Optimal control via collocation and non-linear programming , 1975 .

[16]  Takeshi Ishikawa,et al.  Modelling and optimisation of an industrial batch process for the production of dioctyl phthalate , 1997 .

[17]  Sigurd Skogestad,et al.  Optimal control and on-line operation of reactive batch distillation , 1994 .

[18]  J. E. Cuthrell,et al.  Simultaneous optimization and solution methods for batch reactor control profiles , 1989 .

[19]  Sanyasi Rao,et al.  Optimization of a biochemical fed-batch reactor using sequential quadratic programming , 1999 .

[20]  C. Neuman,et al.  A suboptimal control algorithm for constrained problems using cubic splines , 1973 .

[21]  H. Lim,et al.  Optimization of feed rate profile for the monoclonal antibody production , 1999 .

[22]  Christodoulos A. Floudas,et al.  Deterministic Global Optimization in Nonlinear Optimal Control Problems , 2000, J. Glob. Optim..

[23]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[24]  George M. Siouris,et al.  An Engineering Approach to Optimal Control and Estimation Theory , 1996 .

[25]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Vol. II , 1976 .

[26]  Julio R. Banga,et al.  Global Optimization of Chemical Processes using Stochastic Algorithms , 1996 .

[27]  R. Luus On the application of iterative dynamic programming to singular optimal control problems , 1992 .

[28]  R. Sargent,et al.  Solution of a Class of Multistage Dynamic Optimization Problems. 2. Problems with Path Constraints , 1994 .

[29]  Michel Verhaegen,et al.  Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) , 1999 .

[30]  S. Macchietto,et al.  Efficient Optimization of Batch Distillation with Chemical Reaction Using Polynomial Curve Fitting Techniques , 1997 .

[31]  C. Goh,et al.  A Computational Method for a Class of Dynamical Optimization Problems in which the Terminal Time is Conditionally Free , 1989 .

[32]  Claire S. Adjiman,et al.  Global optimization of dynamic systems , 2004, Comput. Chem. Eng..

[33]  Jeffery S. Logsdon,et al.  Accurate solution of differential-algebraic optimization problems , 1989 .

[34]  H. J. Oberle,et al.  Numerical Computation of Optimal Feed Rates for a Fed-Batch Fermentation Model , 1999 .

[35]  G. van Straten,et al.  Comparison of optimization methods for fed-batch cultures of hybridoma cells , 1997 .

[36]  L. Biegler,et al.  Large-scale dynamic optimization of a low density polyethylene plant , 2000 .

[37]  Linda R. Petzold,et al.  Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.

[38]  V. Vassiliadis,et al.  Efficient Optimal Control of Bioprocesses Using Second-Order Information , 2000 .

[39]  P. Toint,et al.  A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds , 1991 .

[40]  S. Pushpavanam,et al.  Optimization of a Biochemical Fed-Batch ReactorTransition from a Nonsingular to a Singular Problem , 1998 .

[41]  J. Villadsen,et al.  Solution of differential equation models by polynomial approximation , 1978 .

[42]  L. Biegler,et al.  Advances in simultaneous strategies for dynamic process optimization , 2002 .

[43]  Kok Lay Teo,et al.  Control parametrization: A unified approach to optimal control problems with general constraints , 1988, Autom..

[44]  E B Lee,et al.  Foundations of optimal control theory , 1967 .

[45]  Joos Vandewalle,et al.  OPTIMAL CONTROL OF THE PENICILLIN G FED-BATCH FERMENTATION: AN ANALYSIS OF A MODIFIED UNSTRUCTURED MODEL , 1992 .

[46]  Nicholas I. M. Gould,et al.  A globally convergent Lagrangian barrier algorithm for optimization with general inequality constraints and simple bounds , 1997, Math. Comput..

[47]  Jay H. Lee,et al.  Optimal control of a fed-batch bioreactor using simulation-based approximate dynamic programming , 2005, IEEE Transactions on Control Systems Technology.

[48]  J. Rawlings,et al.  Feedback control of chemical processes using on-line optimization techniques , 1990 .

[49]  Application of iterative dynamic programming to time optimal control : Process operation and control , 1994 .

[50]  Inés María Santos-Dueñas,et al.  Estimating the mean acetification rate via on-line monitored changes in ethanol during a semi-continuous vinegar production cycle , 2007 .

[51]  Donald E. Kirk,et al.  Optimal control theory : an introduction , 1970 .

[52]  Eva Balsa-Canto,et al.  Dynamic optimization of bioprocesses: efficient and robust numerical strategies. , 2005, Journal of biotechnology.

[53]  Panos M. Pardalos,et al.  State of the Art in Global Optimization , 1996 .

[54]  W. Ramirez,et al.  Optimal production of secreted protein in fed‐batch reactors , 1988 .

[55]  J. E. Cuthrell,et al.  On the optimization of differential-algebraic process systems , 1987 .

[56]  S. A. Dadebo,et al.  Dynamic optimization of constrained chemical engineering problems using dynamic programming , 1995 .

[57]  O. A. Asbjornsen,et al.  Simultaneous optimization and solution of systems described by differential/algebraic equations , 1987 .

[58]  William Francis Feehery,et al.  Dynamic optimization with path constraints , 1998 .

[59]  W. Ramirez,et al.  Obtaining smoother singular arc policies using a modified iterative dynamic programming algorithm , 1997 .

[60]  H C Lim,et al.  General characteristics of optimal feed rate profiles for various fed‐batch fermentation processes , 1986, Biotechnology and bioengineering.

[61]  Enrique Luis Lima,et al.  Dynamic optimization of semicontinuous emulsion copolymerization reactions: Composition and molecular weight distribution , 2000 .