A light-gated, potassium-selective glutamate receptor for the optical inhibition of neuronal firing

[1]  Michael A. Henninger,et al.  High-Performance Genetically Targetable Optical Neural Silencing via Light-Driven Proton Pumps , 2010 .

[2]  E. Isacoff,et al.  Nanosculpting reversed wavelength sensitivity into a photoswitchable iGluR , 2009, Neuroscience Research.

[3]  S. Cooper,et al.  Remote Control , 2002, Nursing standard (Royal College of Nursing (Great Britain) : 1987).

[4]  Herwig Baier,et al.  Optical control of zebrafish behavior with halorhodopsin , 2009, Proceedings of the National Academy of Sciences.

[5]  Ethan K. Scott,et al.  Optogenetic dissection of a behavioral module in the vertebrate spinal cord , 2009, Nature.

[6]  E. Jorgensen,et al.  Graded synaptic transmission at the Caenorhabditis elegans neuromuscular junction , 2009, Proceedings of the National Academy of Sciences.

[7]  M. Hollmann,et al.  The glutamate receptor subunit delta2 is capable of gating its intrinsic ion channel as revealed by ligand binding domain transplantation , 2009, Proceedings of the National Academy of Sciences.

[8]  Raag D. Airan,et al.  Temporally precise in vivo control of intracellular signalling , 2009, Nature.

[9]  Murtaza Z Mogri,et al.  Optical Deconstruction of Parkinsonian Neural Circuitry , 2009, Science.

[10]  David Ogden,et al.  A comparison of electrically evoked and channel rhodopsin-evoked postsynaptic potentials in the pharyngeal system of Caenorhabditis elegans , 2009, Invertebrate Neuroscience.

[11]  T. Murphy,et al.  Automated light-based mapping of motor cortex by photoactivation of channelrhodopsin-2 transgenic mice , 2009, Nature Methods.

[12]  Karl Deisseroth,et al.  Improved expression of halorhodopsin for light-induced silencing of neuronal activity , 2008, Brain cell biology.

[13]  M. Zhen,et al.  Optogenetic analysis of synaptic function , 2008, Nature Methods.

[14]  F. Engert,et al.  Escape Behavior Elicited by Single, Channelrhodopsin-2-Evoked Spikes in Zebrafish Somatosensory Neurons , 2008, Current Biology.

[15]  Douglas S Kim,et al.  Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration , 2008, Nature Neuroscience.

[16]  Timothy W. Dunn,et al.  Photochemical control of endogenous ion channels and cellular excitability , 2008, Nature Methods.

[17]  S. Eom,et al.  Crystal structure of the GluR0 ligand-binding core from Nostoc punctiforme in complex with L-glutamate: structural dissection of the ligand interaction and subunit interface. , 2008, Journal of molecular biology.

[18]  Robert W. Gereau,et al.  The Glutamate Receptors , 2008 .

[19]  Wei Zhang,et al.  A toolbox for light control of Drosophila behaviors through Channelrhodopsin 2‐mediated photoactivation of targeted neurons , 2007, The European journal of neuroscience.

[20]  G. Ellis‐Davies,et al.  Caged compounds: photorelease technology for control of cellular chemistry and physiology , 2007, Nature Methods.

[21]  E. Isacoff,et al.  Mechanisms of photoswitch conjugation and light activation of an ionotropic glutamate receptor , 2007, Proceedings of the National Academy of Sciences.

[22]  S. Traynelis,et al.  Structural aspects of AMPA receptor activation, desensitization and deactivation , 2007, Current Opinion in Neurobiology.

[23]  Herwig Baier,et al.  Remote Control of Neuronal Activity with a Light-Gated Glutamate Receptor , 2007, Neuron.

[24]  David J. Anderson,et al.  Light Activation of an Innate Olfactory Avoidance Response in Drosophila , 2007, Current Biology.

[25]  Feng Zhang,et al.  Multimodal fast optical interrogation of neural circuitry , 2007, Nature.

[26]  Herwig Baier,et al.  Targeting neural circuitry in zebrafish using GAL4 enhancer trapping , 2007, Nature Methods.

[27]  E. Boyden,et al.  Multiple-Color Optical Activation, Silencing, and Desynchronization of Neural Activity, with Single-Spike Temporal Resolution , 2007, PloS one.

[28]  L. Landmesser,et al.  New optical tools for controlling neuronal activity , 2007, Current Opinion in Neurobiology.

[29]  K. Deisseroth,et al.  optical technologies for probing neural signals and systems , 2007 .

[30]  K. Deisseroth,et al.  Circuit-breakers: optical technologies for probing neural signals and systems , 2007, Nature Reviews Neuroscience.

[31]  M. Hollmann,et al.  Investigation via ion pore transplantation of the putative relationship between glutamate receptors and K+ channels , 2006, Molecular and Cellular Neuroscience.

[32]  M. Hollmann,et al.  Ion pore properties of ionotropic glutamate receptors are modulated by a transplanted potassium channel selectivity filter , 2006, Molecular and Cellular Neuroscience.

[33]  G. Nagel,et al.  Light-Induced Activation of Distinct Modulatory Neurons Triggers Appetitive or Aversive Learning in Drosophila Larvae , 2006, Current Biology.

[34]  Akihiro Urasaki,et al.  Transposon-mediated gene trapping in zebrafish. , 2006, Methods.

[35]  E. Isacoff,et al.  Allosteric control of an ionotropic glutamate receptor with an optical switch , 2006, Nature chemical biology.

[36]  E. Bamberg,et al.  Light Activation of Channelrhodopsin-2 in Excitable Cells of Caenorhabditis elegans Triggers Rapid Behavioral Responses , 2005, Current Biology.

[37]  H. Chiel,et al.  Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[38]  K. Deisseroth,et al.  Millisecond-timescale, genetically targeted optical control of neural activity , 2005, Nature Neuroscience.

[39]  V. Borisenko,et al.  Reversibility of conformational switching in light-sensitive peptides , 2005 .

[40]  E. Isacoff,et al.  Light-activated ion channels for remote control of neuronal firing , 2004, Nature Neuroscience.

[41]  C. Jatzke,et al.  Block of AMPA Receptor Desensitization by a Point Mutation outside the Ligand-Binding Domain , 2004, The Journal of Neuroscience.

[42]  H. Guy,et al.  A common architecture for K+ channels and ionotropic glutamate receptors? , 2003, Trends in Neurosciences.

[43]  Michael Pasternack,et al.  α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptor Channels Lacking the N-terminal Domain* , 2002, The Journal of Biological Chemistry.

[44]  B. Zemelman,et al.  Selective Photostimulation of Genetically ChARGed Neurons , 2002, Neuron.

[45]  Michael Pasternack,et al.  Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor channels lacking the N-terminal domain. , 2002, The Journal of biological chemistry.

[46]  R Olson,et al.  Mechanisms for ligand binding to GluR0 ion channels: crystal structures of the glutamate and serine complexes and a closed apo state. , 2001, Journal of molecular biology.

[47]  Y. Jan,et al.  Role of ER export signals in controlling surface potassium channel numbers. , 2001, Science.

[48]  Eric Gouaux,et al.  Functional characterization of a potassium-selective prokaryotic glutamate receptor , 1999, Nature.

[49]  M. Hollmann,et al.  Investigation by ion channel domain transplantation of rat glutamate receptor subunits, orphan receptors and a putative NMDA receptor subunit , 1999, The European journal of neuroscience.

[50]  R. Dingledine,et al.  The glutamate receptor ion channels. , 1999, Pharmacological reviews.

[51]  A. VanDongen,et al.  Structural conservation of ion conduction pathways in K channels and glutamate receptors. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[52]  R. Oswald,et al.  Unraveling the modular design of glutamate-gated ion channels , 1995, Trends in Neurosciences.

[53]  N. Bunce,et al.  Sterically Hindered Azobenzenes: Isolation of cis Isomers and Kinetics of Thermal cis → trans Isomerization. , 1987 .

[54]  N. Bunce,et al.  Sterically hindered azobenzenes: isolation of cis isomers and kinetics of thermal cis .fwdarw. trans isomerization , 1987 .