Analysis of tidal signals in surface displacement measured by a dense continuous GPS array

Abstract We analyze the tidal displacement signals, for the eight major diurnal and semidiurnal tides, from Global Positioning System (GPS) measurements made at the Western United States over the past 16 years with 1075 independent stations. By careful examinations among inland versus coastal GPS data we are able to demonstrate that estimated precisions down to the level of ∼0.1 mm (horizontal) and ∼0.3 mm (vertical) have been reached for the tidal signals, and that at such precisions coherent spatial patterns are revealed in the residual tidal amplitudes and phases after the removal of a priori modeled effects of body tides and ocean tidal loading (OTL). We demonstrate the facility of modern precise GPS data in not only constraining the ocean tide models but, more significantly, in providing source data in terms of regional, complex Love numbers for geophysical inference of the heterogeneities of elastic and inelastic structures in the solid Earth's deep interior on tidal timescales.

[1]  Jan P. Weiss,et al.  Single receiver phase ambiguity resolution with GPS data , 2010 .

[2]  W. Farrell Deformation of the Earth by surface loads , 1972 .

[3]  O. Francis,et al.  Modelling the global ocean tides: modern insights from FES2004 , 2006 .

[4]  V. Dehant,et al.  New transfer functions for nutations of a nonrigid Earth , 1997 .

[5]  L. Metivier,et al.  Body tides of a convecting, laterally heterogeneous, and aspherical Earth , 2008 .

[6]  J. Zumberge,et al.  Precise point positioning for the efficient and robust analysis of GPS data from large networks , 1997 .

[7]  H. Schuh,et al.  Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium‐Range Weather Forecasts operational analysis data , 2006 .

[8]  G. Wahba Spline models for observational data , 1990 .

[9]  Z. Alterman,et al.  Propagation of Rayleigh Waves in the Earth , 1937 .

[10]  P. M. Mathews,et al.  Determination of tidal h Love number parameters in the diurnal band using an extensive VLBI data set , 1994 .

[11]  Duncan Carr Agnew,et al.  Strainmeters and tiltmeters , 1986 .

[12]  T. Baker,et al.  An estimate of the errors in gravity ocean tide loading computations , 2005 .

[13]  Hans-Georg Scherneck,et al.  Assessing the accuracy of predicted ocean tide loading displacement values , 2008 .

[14]  G. Masters,et al.  Spherically symmetric attenuation within the Earth from normal mode data , 2007 .

[15]  Richard D. Ray,et al.  A Global Ocean Tide Model From TOPEX/POSEIDON Altimetry: GOT99.2 , 1999 .

[16]  Xiaoli Ding,et al.  Estimates of ocean tide loading displacements and its impact on position time series in Hong Kong using a dense continuous GPS network , 2009 .

[17]  Ole Baltazar Andersen,et al.  Multimission empirical ocean tide modeling for shallow waters and polar seas , 2011 .

[18]  John M. Wahr,et al.  Body tides on an elliptical, rotating, elastic and oceanless earth , 1981 .

[19]  J. Wahr,et al.  Tides for a convective Earth , 1999 .

[20]  P. M. Mathews,et al.  Tidal station displacements , 1997 .

[21]  T. Baker,et al.  Validating Earth and ocean tide models using tidal gravity measurements , 2003 .

[22]  F. Gilbert,et al.  An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra , 1975, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[23]  W. Bosch,et al.  EOT11A - Empirical Ocean Tide Model from Multi-Mission Satellite Altimetry , 2008 .

[24]  P. M. Mathews Love Numbers and Gravimetric Factor for Diurnal Tides. , 2001 .

[25]  Irwin I. Shapiro,et al.  Love numbers for a rotating spheroidal Earth∷ New definitions and numerical values , 1995 .

[26]  Geoffrey Blewitt,et al.  GPS and Space-Based Geodetic Methods , 2007 .

[27]  S. Okubo,et al.  Erratum to: “Partial derivative of love numbers” , 1984 .

[28]  J. Mitrovica,et al.  Body tides on a 3-D elastic earth: Toward a tidal tomography , 2009 .

[29]  G. Egbert,et al.  Efficient Inverse Modeling of Barotropic Ocean Tides , 2002 .

[30]  S. Okubo,et al.  Partial derivative of love numbers , 1983 .

[31]  Duncan Carr Agnew,et al.  NLOADF: A program for computing ocean‐tide loading , 1997 .

[32]  Yuebing Li,et al.  Green's function of the deformation of the Earth as a result of atmospheric loading , 2004 .

[33]  Takeo Ito,et al.  Probing Asthenospheric Density, Temperature, and Elastic Moduli Below the Western United States , 2011, Science.

[34]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[35]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[36]  Walter H. F. Smith,et al.  New, improved version of generic mapping tools released , 1998 .

[37]  Peter J. Clarke,et al.  Validation of ocean tide models around Antarctica using onshore GPS and gravity data , 2005 .