Analysis of tidal signals in surface displacement measured by a dense continuous GPS array
暂无分享,去创建一个
[1] Jan P. Weiss,et al. Single receiver phase ambiguity resolution with GPS data , 2010 .
[2] W. Farrell. Deformation of the Earth by surface loads , 1972 .
[3] O. Francis,et al. Modelling the global ocean tides: modern insights from FES2004 , 2006 .
[4] V. Dehant,et al. New transfer functions for nutations of a nonrigid Earth , 1997 .
[5] L. Metivier,et al. Body tides of a convecting, laterally heterogeneous, and aspherical Earth , 2008 .
[6] J. Zumberge,et al. Precise point positioning for the efficient and robust analysis of GPS data from large networks , 1997 .
[7] H. Schuh,et al. Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium‐Range Weather Forecasts operational analysis data , 2006 .
[8] G. Wahba. Spline models for observational data , 1990 .
[9] Z. Alterman,et al. Propagation of Rayleigh Waves in the Earth , 1937 .
[10] P. M. Mathews,et al. Determination of tidal h Love number parameters in the diurnal band using an extensive VLBI data set , 1994 .
[11] Duncan Carr Agnew,et al. Strainmeters and tiltmeters , 1986 .
[12] T. Baker,et al. An estimate of the errors in gravity ocean tide loading computations , 2005 .
[13] Hans-Georg Scherneck,et al. Assessing the accuracy of predicted ocean tide loading displacement values , 2008 .
[14] G. Masters,et al. Spherically symmetric attenuation within the Earth from normal mode data , 2007 .
[15] Richard D. Ray,et al. A Global Ocean Tide Model From TOPEX/POSEIDON Altimetry: GOT99.2 , 1999 .
[16] Xiaoli Ding,et al. Estimates of ocean tide loading displacements and its impact on position time series in Hong Kong using a dense continuous GPS network , 2009 .
[17] Ole Baltazar Andersen,et al. Multimission empirical ocean tide modeling for shallow waters and polar seas , 2011 .
[18] John M. Wahr,et al. Body tides on an elliptical, rotating, elastic and oceanless earth , 1981 .
[19] J. Wahr,et al. Tides for a convective Earth , 1999 .
[20] P. M. Mathews,et al. Tidal station displacements , 1997 .
[21] T. Baker,et al. Validating Earth and ocean tide models using tidal gravity measurements , 2003 .
[22] F. Gilbert,et al. An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra , 1975, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[23] W. Bosch,et al. EOT11A - Empirical Ocean Tide Model from Multi-Mission Satellite Altimetry , 2008 .
[24] P. M. Mathews. Love Numbers and Gravimetric Factor for Diurnal Tides. , 2001 .
[25] Irwin I. Shapiro,et al. Love numbers for a rotating spheroidal Earth∷ New definitions and numerical values , 1995 .
[26] Geoffrey Blewitt,et al. GPS and Space-Based Geodetic Methods , 2007 .
[27] S. Okubo,et al. Erratum to: “Partial derivative of love numbers” , 1984 .
[28] J. Mitrovica,et al. Body tides on a 3-D elastic earth: Toward a tidal tomography , 2009 .
[29] G. Egbert,et al. Efficient Inverse Modeling of Barotropic Ocean Tides , 2002 .
[30] S. Okubo,et al. Partial derivative of love numbers , 1983 .
[31] Duncan Carr Agnew,et al. NLOADF: A program for computing ocean‐tide loading , 1997 .
[32] Yuebing Li,et al. Green's function of the deformation of the Earth as a result of atmospheric loading , 2004 .
[33] Takeo Ito,et al. Probing Asthenospheric Density, Temperature, and Elastic Moduli Below the Western United States , 2011, Science.
[34] D. L. Anderson,et al. Preliminary reference earth model , 1981 .
[35] R. E. Kalman,et al. A New Approach to Linear Filtering and Prediction Problems , 2002 .
[36] Walter H. F. Smith,et al. New, improved version of generic mapping tools released , 1998 .
[37] Peter J. Clarke,et al. Validation of ocean tide models around Antarctica using onshore GPS and gravity data , 2005 .