Biomimetic subwavelength antireflective gratings on GaAs.

We have developed a simple and scalable bottom-up approach for fabricating moth-eye antireflective coatings on GaAs substrates. Monolayer, non-close-packed silica colloidal crystals are created on crystalline GaAs wafers by a spin-coating-based single-layer reduction technique. These colloidal monolayers can be used as etching masks during a BCl(3) dry-etch process to generate subwavelength-structured antireflective gratings directly on GaAs substrates. The gratings exhibit excellent broadband antireflective properties, and the specular reflection matches with the theoretical prediction using a rigorous coupled-wave analysis model. These bioinspired antireflection coatings have important technological applications ranging from efficient solar cells to IR detectors.

[1]  Gang Zhang,et al.  Fabrication of heterogeneous binary arrays of nanoparticles via colloidal lithography. , 2008, Journal of the American Chemical Society.

[2]  K. Hane,et al.  Broadband antireflection gratings fabricated upon silicon substrates. , 1999, Optics letters.

[3]  D. Choi,et al.  Colloidal lithographic nanopatterning via reactive ion etching. , 2004, Journal of the American Chemical Society.

[4]  Zhaoning Yu,et al.  Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff , 2003 .

[5]  O. Heavens Thin-film Optical Filters , 1986 .

[6]  Peng Jiang,et al.  Broadband moth-eye antireflec tion coatings on silicon , 2008 .

[7]  Frank Dimroth,et al.  GaAs converters for high power densities of laser illumination , 2008 .

[8]  Thomas K. Gaylord,et al.  Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach , 1995 .

[9]  Michael J McFarland,et al.  Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating. , 2004, Journal of the American Chemical Society.

[10]  C. Pan,et al.  Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. , 2007, Nature nanotechnology.

[11]  Gareth H. McKinley,et al.  Designing Superoleophobic Surfaces , 2007, Science.

[12]  Volker Wittwer,et al.  Subwavelength-structured antireflective surfaces on glass , 1999 .

[13]  Joachim P Spatz,et al.  Biomimetic interfaces for high-performance optics in the deep-UV light range. , 2008, Nano letters.

[14]  E. Schubert,et al.  Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm. , 2008, Optics express.

[15]  Kazuhiro Hane,et al.  100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask , 2001 .

[16]  Peng Jiang,et al.  Templated fabrication of sub-100 nm periodic nanostructures. , 2008, Chemical communications.

[17]  Chong-Long Ho,et al.  High-Speed InGaP/GaAs p-i-n Photodiodes With Wide Spectral Range , 2007, IEEE Electron Device Letters.

[18]  M. Hutley,et al.  Reduction of Lens Reflexion by the “Moth Eye” Principle , 1973, Nature.

[19]  W Steckelmacher,et al.  Thin-film optical filters, 3rd Edition , 2002 .

[20]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[21]  G. Michael Morris,et al.  Antireflection behavior of silicon subwavelength periodic structures for visible light , 1997 .

[22]  Orlin D. Velev,et al.  Assembly and characterization of colloid-based antireflective coatings on multicrystalline silicon solar cells , 2007 .

[23]  V. Colvin,et al.  Two-dimensional nonclose-packed colloidal crystals formed by spincoating , 2006 .

[24]  D. Stavenga,et al.  Light on the moth-eye corneal nipple array of butterflies , 2006, Proceedings of the Royal Society B: Biological Sciences.

[25]  Peng Jiang,et al.  Bioinspired broadband antireflection coatings on GaSb , 2008 .

[26]  High efficiency dual-wavelength surface-emitting laser incorporating integrated dual-grating reflector , 2006, IEEE Photonics Technology Letters.