Argon predissociation infrared spectroscopy of the hydroxide–water complex (OH−·H2O)

Abstract We report the first vibrational spectrum of the degenerate proton transfer system OH−·H2O. The complex is cooled by attachment of argon atoms and the spectrum is observed by argon predissociation spectroscopy in the OH stretching region. A strong, sharp transition is observed just below the region usually associated with the free OH stretch, while broader bands appear lower in energy and are weaker than the dominant free OH peak. The latter are assigned with the aid of ab initio calculations to the first overtone of the coupled intramolecular bend and strongly red-shifted H-bonded OH stretching modes.

[1]  I. Tuñón,et al.  Molecular dynamics simulations of elementary chemical processes in liquid water using combined density functional and molecular mechanics potentials. I. Proton transfer in strongly H-bonded complexes , 1997 .

[2]  D. Rinaldi,et al.  Hydroxide Ion in Liquid Water: Structure, Energetics, and Proton Transfer Using a Mixed Discrete-Continuum ab Initio Model , 1995 .

[3]  J. Owrutsky,et al.  The vibration-rotation spectrum of the hydroxide anion (OH - ) , 1985 .

[4]  P. Wormer,et al.  Theoretical study of the OH−(H2O)2 system: Nature and importance of three-body interactions , 1998 .

[5]  Marvin Johnson,et al.  Vibrational Spectroscopy of the Ionic Hydrogen Bond: Fermi Resonances and Ion−Molecule Stretching Frequencies in the Binary X-·H2O (X = Cl, Br, I) Complexes via Argon Predissociation Spectroscopy , 1998 .

[6]  L. Viehland,et al.  Interaction potentials for the alkali ion—rare-gas systems , 1985 .

[7]  Self-Consistent Reaction Field Calculations of Nonequilibrium Solvent Effects on Proton Transfer Processes through Low-Barrier Hydrogen Bonds , 1998 .

[8]  C. Chaudhuri,et al.  Infrared spectra and isomeric structures of hydroxide ion-water clusters OH- (H2O)1-5: a comparison with H3O (H2O)1-5 , 2001 .

[9]  W. Klopper,et al.  Ab initio calculation of proton barrier and binding energy of the (H2O)OH− complex , 2002 .

[10]  A. Pudzianowski A Systematic Appraisal of Density Functional Methodologies for Hydrogen Bonding in Binary Ionic Complexes , 1996 .

[11]  M. Parrinello,et al.  The nature and transport mechanism of hydrated hydroxide ions in aqueous solution , 2002, Nature.

[12]  S. Xantheas Theoretical Study of Hydroxide Ion-Water Clusters , 1995 .

[13]  D. Salahub,et al.  Solvation of the Hydroxide Anion: A Combined DFT and Molecular Dynamics Study , 2000 .

[14]  M. Johnson,et al.  Vibrational spectrum of I−(H2O) , 1996 .

[15]  R. Moszynski,et al.  The OH−(H2O)2 system: efficiency of ab initio and DFT calculations for two- and three-body interactions , 2002 .

[16]  J. Novoa,et al.  Density functional computations on the structure and stability of OH−(H2O)n (n = 1−3) clusters. A test study , 1997 .

[17]  Michele Parrinello,et al.  On the Quantum Nature of the Shared Proton in Hydrogen Bonds , 1997, Science.

[18]  S. Scheiner,et al.  Relative Stability of Hydrogen and Deuterium Bonds , 1996 .

[19]  Weber,et al.  Isolating the spectroscopic signature of a hydration shell with the use of clusters: superoxide tetrahydrate , 2000, Science.

[20]  Marvin Johnson,et al.  VIBRATIONAL SPECTROSCOPY OF SMALL BR-.(H2O)N AND I-.(H2O)N CLUSTERS : INFRARED CHARACTERIZATION OF THE IONIC HYDROGEN BOND , 1998 .

[21]  K. Kawaguchi,et al.  Infrared diode laser study of the hydrogen bifluoride anion: FHF− and FDF− , 1986 .

[22]  J. Riveros,et al.  On the Calculation of the Absolute Solvation Free Energy of Ionic Species: Application of the Extrapolation Method to the Hydroxide Ion in Aqueous Solution , 2000 .

[23]  Marvin Johnson,et al.  Vibrational spectroscopy of the F−·H2O complex via argon predissociation: photoinduced, intracluster proton transfer? , 2000 .

[24]  J. D. Bernal,et al.  A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen and Hydroxyl Ions , 1933 .

[25]  L. Corrales Dissociative Model of Water Clusters , 1999 .

[26]  Marvin Johnson,et al.  A pulsed supersonic entrainment reactor for the rational preparation of cold ionic complexes , 2000 .

[27]  Keith E. Laidig,et al.  PROTON TRANSFER IN IONIC HYDROGEN BONDS , 1996 .

[28]  J. R. Pliego,et al.  Ab initio study of the hydroxide ion–water clusters: An accurate determination of the thermodynamic properties for the processes nH2O+OH−→HO−(H2O)n (n=1–4) , 2000 .

[29]  S. Xantheas,et al.  Microscopic hydration of the fluoride anion , 1999 .

[30]  D. Clary,et al.  Structure of Water Clusters. The Contribution of Many-Body Forces, Monomer Relaxation, and Vibrational Zero-Point Energy , 1996 .

[31]  Jong-Ho Choi,et al.  Vibrational Spectroscopy of the Cl.(H2O)n Anionic Clusters, n = 1-5 , 1998 .

[32]  J. F. Haw,et al.  Gauge-Including Atomic Orbital Proton Chemical Shifts of Strong Hydrogen Bonds: The Importance of Electron Correlation , 2001 .