Global optimization of mixed-integer bilevel programming problems

Abstract.Two approaches that solve the mixed-integer nonlinear bilevel programming problem to global optimality are introduced. The first addresses problems mixed-integer nonlinear in outer variables and C2-nonlinear in inner variables. The second adresses problems with general mixed-integer nonlinear functions in outer level. Inner level functions may be mixed-integer nonlinear in outer variables, linear, polynomial, or multilinear in inner integer variables, and linear in inner continuous variables. This second approach is based on reformulating the mixed-integer inner problem as continuous via its vertex polyheral convex hull representation and solving the resulting nonlinear bilevel optimization problem by a novel deterministic global optimization framework. Computational studies illustrate proposed approaches.

[1]  C. Floudas,et al.  Active constraint strategy for flexibility analysis in chemical processes , 1987 .

[2]  Kathrin Fischer,et al.  Sequential Discrete p-Facility Models for Competitive Location Planning , 2002, Ann. Oper. Res..

[3]  Christodoulos A. Floudas,et al.  Global Optimization in Design under Uncertainty: Feasibility Test and Flexibility Index Problems , 2001 .

[4]  L. N. Vicente,et al.  Discrete linear bilevel programming problem , 1996 .

[5]  A. Burgard,et al.  Optimization-based framework for inferring and testing hypothesized metabolic objective functions. , 2003, Biotechnology and bioengineering.

[6]  A. Ciric,et al.  A dual temperature simulated annealing approach for solving bilevel programming problems , 1998 .

[7]  Hanif D. Sherali,et al.  A Hierarchy of Relaxations and Convex Hull Characterizations for Mixed-integer Zero-one Programming Problems , 1994, Discret. Appl. Math..

[8]  Maw-Sheng Chern,et al.  Nonlinear integer bilevel programming , 1994 .

[9]  Jonathan F. Bard,et al.  The Mixed Integer Linear Bilevel Programming Problem , 1990, Oper. Res..

[10]  S. R. Arora,et al.  An algorithm for the integer linear fractional bilevel programming problem , 1997 .

[11]  L. Biegler,et al.  A nested, simultaneous approach for dynamic optimization problems—I , 1996 .

[12]  Egon Balas,et al.  Lift-and-project for Mixed 0-1 programming: recent progress , 2002, Discret. Appl. Math..

[13]  Hanif D. Sherali,et al.  A Hierarchy of Relaxations Between the Continuous and Convex Hull Representations for Zero-One Programming Problems , 1990, SIAM J. Discret. Math..

[14]  Jianzhong Zhang,et al.  A Bilevel Programming Method for Pipe Network Optimization , 1996, SIAM J. Optim..

[15]  Ue-Pyng Wen,et al.  Algorithms for solving the mixed integer two-level linear programming problem , 1990, Comput. Oper. Res..

[16]  C. Floudas Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications , 1995 .

[17]  Hai Yang,et al.  Traffic assignment and signal control in saturated road networks , 1995 .

[18]  A. Neumaier,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs — I. Theoretical advances , 1998 .

[19]  Zeynep H. Gümüş,et al.  Reactive distillation column design with vapor/liquid/liquid equilibria , 1997 .

[20]  Christodoulos A. Floudas,et al.  Rigorous convex underestimators for general twice-differentiable problems , 1996, J. Glob. Optim..

[21]  C. Adjiman,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs—II. Implementation and computational results , 1998 .

[22]  Panos M. Pardalos,et al.  Equivalent formulations and necessary optimality conditions for the Lennard–Jones problem , 2002, J. Glob. Optim..

[23]  T. Raivio,et al.  On Applied Nonlinear and Bilevel Programming or Pursuit-Evasion Games , 2001 .

[24]  Christodoulos A. Floudas,et al.  Deterministic Global Optimization , 1990 .

[25]  Christodoulos A. Floudas,et al.  Deterministic global optimization - theory, methods and applications , 2010, Nonconvex optimization and its applications.

[26]  William H. K. Lam,et al.  BALANCE OF CAR OWNERSHIP UNDER USER DEMAND AND ROAD NETWORK SUPPLY CONDITIONS: CASE STUDY IN HONG KONG , 2004 .

[27]  Christodoulos A. Floudas,et al.  αBB: A global optimization method for general constrained nonconvex problems , 1995, J. Glob. Optim..

[28]  Patrice Marcotte,et al.  A bilevel programming approach to the travelling salesman problem , 2004, Oper. Res. Lett..

[29]  C. Adjiman,et al.  Global optimization of mixed‐integer nonlinear problems , 2000 .

[30]  J. Bard,et al.  Nondifferentiable and Two-Level Mathematical Programming , 1996 .

[31]  Jonathan F. Bard,et al.  A Branch and Bound Algorithm for the Bilevel Programming Problem , 1990, SIAM J. Sci. Comput..

[32]  Dragan Miljkovic Privatizing state farms in Yugoslavia , 2002 .

[33]  Warren P. Adams,et al.  A hierarchy of relaxation between the continuous and convex hull representations , 1990 .