Experimental investigation into the performance of an aerostatic industrial thrust bearing

Abstract Load and flow versus air-gap curves and stability maps have been obtained for an industrial externally-pressurized air-lubricated thrust bearing with a central restrictor. Supply pressure and pocket depth were treated as parameters. Bearing stiffness was estimated by using a computer to fit a polynomial type curve to the test data. The results show that whereas the effect of inserting a pocket into the bearing improves its load capacity, there is no significant improvement in film stiffness at design conditions. The suggestion is made that the diameter of the orifice in the restrictor should be increased. As pocket depth is increased beyond the design value the bearing becomes prone to pneumatic hammer.