The MUSIC algorithm for impedance tomography of small inclusions from discrete data
暂无分享,去创建一个
[1] Nuutti Hyvönen,et al. Point Measurements for a Neumann-to-Dirichlet Map and the Calderón Problem in the Plane , 2012, SIAM J. Math. Anal..
[2] Richard M. Leahy,et al. Source localization using recursively applied and projected (RAP) MUSIC , 1997 .
[3] Ekaterina Iakovleva,et al. A MUSIC Algorithm for Locating Small Inclusions Buried in a Half-Space from the Scattering Amplitude at a Fixed Frequency , 2005, Multiscale Model. Simul..
[4] Michael Vogelius,et al. A direct impedance tomography algorithm for locating small inhomogeneities , 2003, Numerische Mathematik.
[5] Bastian Harrach,et al. JUSTIFICATION OF POINT ELECTRODE MODELS IN ELECTRICAL IMPEDANCE TOMOGRAPHY , 2011 .
[6] Otto Seiskari,et al. Detection of multiple inclusions from sweep data of electrical impedance tomography , 2012 .
[7] Mourad Sini,et al. Detection of point-like scatterers using one type of scattered elastic waves , 2012, J. Comput. Appl. Math..
[8] Seick Kim,et al. Neumann functions for second order elliptic systems with measurable coefficients , 2011, 1112.2436.
[9] H. Ammari,et al. Reconstruction of Small Inhomogeneities from Boundary Measurements , 2005 .
[10] A. Kirsch. The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media , 2002 .
[11] Ekaterina Iakovleva,et al. Direct Elastic Imaging of a Small Inclusion , 2008, SIAM J. Imaging Sci..
[12] Ren-Cang Li,et al. Relative Perturbation Theory: II. Eigenspace and Singular Subspace Variations , 1996, SIAM J. Matrix Anal. Appl..
[13] Michael Vogelius,et al. Identification of conductivity imperfections of small diameter by boundary measurements. Continuous , 1998 .
[14] Otto Seiskari. Locating multiple inclusions from sweep data of electrical impedance tomography , 2011 .
[15] Construction of invisible conductivity perturbations for the point electrode model in electrical impedance tomography , 2014, 1412.6768.
[16] Otto Seiskari,et al. Point Electrode Problems in Piecewise Smooth Plane Domains , 2012, SIAM J. Math. Anal..
[17] Habib Ammari,et al. Complete Asymptotic Expansions of Solutions of the System of Elastostatics in the Presence of an Inclusion of Small Diameter and Detection of an Inclusion , 2002 .
[18] J. Devaney,et al. 1 Super-resolution Processing of Multi-static Data Using Time Reversal and MUSIC A , 2000 .
[19] Michael Stewart,et al. Perturbation of the SVD in the presence of small singular values , 2006 .
[20] Nuutti Hyvönen,et al. Convex backscattering support in electric impedance tomography , 2011, Numerische Mathematik.
[21] J. Hayashi. [Sampling methods]. , 1982, Josanpu zasshi = The Japanese journal for midwife.
[22] Habib Ammari,et al. Identification of small inhomogeneities: Asymptotic factorization , 2007, Math. Comput..
[23] N I Grinberg,et al. The Factorization Method for Inverse Problems , 2007 .
[24] R. O. Schmidt,et al. Multiple emitter location and signal Parameter estimation , 1986 .
[25] Tosio Kato. Perturbation theory for linear operators , 1966 .
[26] Frédéric Hecht,et al. New development in freefem++ , 2012, J. Num. Math..
[27] Christophe Hazard,et al. Selective Acoustic Focusing Using Time-Harmonic Reversal Mirrors , 2004, SIAM J. Appl. Math..
[28] Roland Griesmaier,et al. An Asymptotic Factorization Method for Inverse Electromagnetic Scattering in Layered Media , 2008, SIAM J. Appl. Math..