Universal Functionals in Density Functional Theory

In this chapter we first review the Levy-Lieb functional, which gives the lowest kinetic and interaction energy that can be reached with all possible quantum states having a given density. We discuss two possible convex generalizations of this functional, corresponding to using mixed canonical and grand-canonical states, respectively. We present some recent works about the local density approximation, in which the functionals get replaced by purely local functionals constructed using the uniform electron gas energy per unit volume. We then review the known upper and lower bounds on the Levy-Lieb functionals. We start with the kinetic energy alone, then turn to the classical interaction alone, before we are able to put everything together. An appendix is devoted to the Hohenberg-Kohn theorem and the role of many-body unique continuation in its proof.

[1]  Codina Cotar,et al.  Infinite-body optimal transport with Coulomb cost , 2013, Calculus of Variations and Partial Differential Equations.

[2]  Veikko Ennola,et al.  A lemma about the Epstein zeta-function , 1964, Proceedings of the Glasgow Mathematical Association.

[3]  E. Lieb,et al.  Strichartz inequality for orthonormal functions , 2013, 1306.1309.

[4]  E. Lieb,et al.  Floating Wigner crystal with no boundary charge fluctuations , 2019, Physical Review B.

[5]  A. Klyachko,et al.  The Pauli Principle Revisited , 2008, 0802.0918.

[6]  M. Seidl Strong-interaction limit of density-functional theory , 1999 .

[7]  Martin Rumpf,et al.  Topological Optimization and Optimal Transport: In the Applied Sciences , 2017 .

[8]  E. Lieb,et al.  Improved Lower Bound on the Indirect Coulomb Energy , 1981 .

[9]  J. Hansen,et al.  Statistical mechanics of dense ionized matter. II. Equilibrium properties and melting transition of the crystallized one-component plasma , 1973 .

[10]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[11]  Codina Cotar,et al.  Equality of the Jellium and Uniform Electron Gas next-order asymptotic terms for Riesz potentials , 2017 .

[12]  John P. Perdew,et al.  Density Functionals for Non-relativistic Coulomb Systems in the New Century , 2003 .

[13]  A new estimate on the indirect Coulomb Energy , 2011, 1103.2162.

[14]  Shing-Tung Yau,et al.  On the Schrödinger equation and the eigenvalue problem , 1983 .

[15]  S. Serfaty,et al.  Crystallization for Coulomb and Riesz interactions as a consequence of the Cohn-Kumar conjecture , 2019, Proceedings of the American Mathematical Society.

[16]  J. W. S. Cassels,et al.  On a problem of Rankin about the Epstein zeta-function , 1959, Proceedings of the Glasgow Mathematical Association.

[17]  J. Borwein,et al.  Analysis of certain lattice sums , 1989 .

[18]  Raymond F. Bishop,et al.  Electron correlations. II. Ground-state results at low and metallic densities , 1982 .

[19]  E. Lieb,et al.  Energy cost to make a hole in the Fermi sea. , 2011, Physical review letters.

[20]  Michel Rumin,et al.  Balanced distribution-energy inequalities and related entropy bounds , 2010, ArXiv.

[21]  Simone Di Marino,et al.  The strictly-correlated electron functional for spherically symmetric systems revisited , 2017, 1702.05022.

[22]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[23]  N. H. March,et al.  Variational Methods based on the Density Matrix , 1958 .

[24]  J. Borwein,et al.  On lattice sums and Wigner limits , 2013, 1310.1423.

[25]  C. Fefferman The thermodynamic limit for a crystal , 1985 .

[26]  R. Needs,et al.  Diffusion quantum Monte Carlo study of three-dimensional Wigner crystals , 2004, 0801.0377.

[27]  Jones,et al.  Crystallization of the one-component plasma at finite temperature. , 1996, Physical review letters.

[28]  Elliott H. Lieb,et al.  Statistical Mechanics of the Uniform Electron Gas , 2017, 1705.10676.

[29]  P. Gori-Giorgi,et al.  Strictly correlated electrons in density-functional theory: A general formulation with applications to spherical densities , 2007, cond-mat/0701025.

[30]  A. J. Coleman THE STRUCTURE OF FERMION DENSITY MATRICES , 1963 .

[31]  O. Bokanowski,et al.  A DECOMPOSITION THEOREM FOR WAVE FUNCTIONS IN MOLECULAR QUANTUM CHEMISTRY , 1996 .

[32]  A lower bound for Coulomb energies , 1979 .

[33]  P. Riseborough,et al.  Electron Correlations , 2006 .

[34]  E. Teller,et al.  Monte Carlo Study of a One‐Component Plasma. I , 1966 .

[35]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[36]  G. Chan,et al.  Optimized Lieb-Oxford bound for the exchange-correlation energy , 1999 .

[37]  Codina Cotar,et al.  Equality of the Jellium and Uniform Electron Gas next-order asymptotic terms for Coulomb and Riesz potentials , 2017, 1707.07664.

[38]  Yink Loong Len,et al.  Airy-averaged gradient corrections for two-dimensional fermion gases , 2016, 1612.04048.

[39]  New approach to the calculation of density functionals , 1983 .

[40]  C. B. Morrey ON THE ANALYTICITY OF THE SOLUTIONS OF ANALYTIC NON-LINEAR ELLIPTIC SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS.*1 , 2016 .

[41]  T. Hoffmann-Ostenhof,et al.  "Schrödinger inequalities" and asymptotic behavior of the electron density of atoms and molecules , 1977 .

[42]  J. P. Solovej,et al.  The Thermodynamic Limit of Quantum Coulomb Systems. Part II. Applications , 2008, 0806.1709.

[43]  O. Bratteli Operator Algebras And Quantum Statistical Mechanics , 1979 .

[44]  Volker Bach,et al.  Error bound for the Hartree-Fock energy of atoms and molecules , 1992 .

[45]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[46]  C. Weizsäcker Zur Theorie der Kernmassen , 1935 .

[47]  Michael Seidl,et al.  Strictly correlated electrons in density-functional theory , 1999 .

[48]  M. J. Stott,et al.  Kinetic energy functional for a two-dimensional electron system , 2007 .

[49]  Mathieu Lewin,et al.  Semi-classical limit of the Levy-Lieb functional in Density Functional Theory , 2017, 1706.02199.

[50]  E. Lieb,et al.  Inequalities for the Moments of the Eigenvalues of the Schrodinger Hamiltonian and Their Relation to Sobolev Inequalities , 2002 .

[51]  K. Dennis,et al.  The conditions on the one-matrix for three-body fermion wavefunctions with one-rank equal to six , 1972 .

[52]  Adrienn Ruzsinszky,et al.  Strongly Constrained and Appropriately Normed Semilocal Density Functional. , 2015, Physical review letters.

[53]  P. T. Nam,et al.  Convergence of Levy–Lieb to Thomas–Fermi density functional , 2018, Calculus of Variations and Partial Differential Equations.

[54]  Chen Ning Yang,et al.  Concept of Off-Diagonal Long-Range Order and the Quantum Phases of Liquid He and of Superconductors , 1962 .

[55]  Elias M. Stein,et al.  Unique continuation and absence of positive eigenvalues for Schrodinger operators , 1985 .

[56]  John P. Perdew,et al.  Jacob’s ladder of density functional approximations for the exchange-correlation energy , 2001 .

[57]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[58]  K. Capelle,et al.  Lower bounds on the exchange-correlation energy in reduced dimensions. , 2009, Physical review letters.

[59]  Paul Epstein,et al.  Zur Theorie allgemeiner Zetafunctionen , 1903 .

[60]  Elliott H. Lieb,et al.  Density Functionals for Coulomb Systems , 1983 .

[61]  J. P. Solovej,et al.  A CORRELATION ESTIMATE WITH APPLICATIONS TO QUANTUM SYSTEMS WITH COULOMB INTERACTIONS , 1994 .

[62]  R. Regbaoui Strong Uniqueness for Second Order Differential Operators , 1997 .

[63]  A. Levitt Best constants in Lieb-Thirring inequalities: a numerical investigation , 2012, 1206.1473.

[64]  Henry Cohn,et al.  Universal optimality of the $E_8$ and Leech lattices and interpolation formulas , 2019, Annals of Mathematics.

[65]  W. Hughes Thermodynamics for Coulomb systems: A problem at vanishing particle densities , 1985 .

[66]  C. Foias,et al.  A Simple proof of the generalized Lieb-Thirring inequalities in one-space dimension , 1991 .

[67]  Spin polarization of the low-density three-dimensional electron gas. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[68]  J. Perdew,et al.  Density-Functional Theory for Fractional Particle Number: Derivative Discontinuities of the Energy , 1982 .

[69]  Jianwei Sun,et al.  Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional. , 2016, Nature chemistry.

[70]  E. Lieb,et al.  A positive density analogue of the Lieb-Thirring inequality , 2011, 1108.4246.

[71]  P. T. Nam Lieb–Thirring inequality with semiclassical constant and gradient error term , 2017, 1704.07188.

[72]  J. N. Gregg The existence of the thermodynamic limit in Coulomb-like systems , 1989 .

[73]  B. Judd,et al.  Reduced Density Matrices: Coulson's Challenge , 2000 .

[74]  M. Orio,et al.  Density functional theory , 2009, Photosynthesis Research.

[75]  Elliott H. Lieb,et al.  Variational principle for many-fermion systems , 1981 .

[76]  On Some Open Problems in Many-Electron Theory , 2014, 1406.4475.

[77]  E. Lieb,et al.  The Stability of Matter in Quantum Mechanics , 2009 .

[78]  E. Lieb,et al.  The local density approximation in density functional theory , 2019, Pure and Applied Analysis.

[79]  C. B. Morrey On the Analyticity of the Solutions of Analytic Non-Linear Elliptic Systems of Partial Differential Equations: Part II. Analyticity at the Boundary , 1958 .

[80]  Marion Kee,et al.  Analysis , 2004, Machine Translation.

[81]  A. Maradudin,et al.  Zero‐Point Energy of an Electron Lattice , 1960 .

[82]  Simone Di Marino,et al.  Equality between Monge and Kantorovich multimarginal problems with Coulomb cost , 2015 .

[83]  E. Lieb Thomas-fermi and related theories of atoms and molecules , 1981 .

[84]  Hugh L. Montgomery,et al.  Minimal theta functions , 1988, Glasgow Mathematical Journal.

[85]  K. Capelle,et al.  How tight is the Lieb-Oxford bound? , 2007, The Journal of chemical physics.

[86]  J. Borwein,et al.  Energy of static electron lattices , 1988 .

[87]  Vermont Rutherfoord On the Lazarev-Lieb Extension of the Hobby-Rice Theorem , 2012, 1212.5759.

[88]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.

[89]  Adrienn Ruzsinszky,et al.  Semilocal density functional obeying a strongly tightened bound for exchange , 2015, Proceedings of the National Academy of Sciences.

[90]  Simone Di Marino,et al.  Multimarginal Optimal Transport Maps for One–dimensional Repulsive Costs , 2015, Canadian Journal of Mathematics.

[91]  N. H. March,et al.  Kinetic energy density and Pauli potential: dimensionality dependence, gradient expansions and non-locality , 1991 .

[92]  J. E. Harriman Orthonormal orbitals for the representation of an arbitrary density , 1981 .

[93]  A. Klyachko Quantum marginal problem and N-representability , 2005, quant-ph/0511102.

[94]  P. T. Nam,et al.  The Lieb–Thirring inequality revisited , 2018, Journal of the European Mathematical Society.

[95]  R. Dreizler,et al.  Density-Functional Theory , 1990 .

[96]  E. Lieb The Stability of Matter: From Atoms to Stars , 2001 .

[97]  Louis Garrigue Unique Continuation for Many-Body Schrödinger Operators and the Hohenberg-Kohn Theorem , 2018, Mathematical Physics, Analysis and Geometry.

[98]  D. A. Kirzhnits QUANTUM CORRECTIONS TO THE THOMAS-FERMI EQUATION , 1957 .

[99]  Perdew,et al.  Tight bound and convexity constraint on the exchange-correlation-energy functional in the low-density limit, and other formal tests of generalized-gradient approximations. , 1993, Physical review. B, Condensed matter.

[100]  Lieb,et al.  Ground states of large quantum dots in magnetic fields. , 1995, Physical review. B, Condensed matter.

[101]  Giovanni Vignale,et al.  Quantum Theory of the Electron Liquid , 2005 .

[102]  Elliott H. Lieb Density functionals for coulomb systems , 1983 .

[103]  B. Simon,et al.  Schrödinger Semigroups , 2007 .

[104]  Codina Cotar,et al.  Density Functional Theory and Optimal Transportation with Coulomb Cost , 2011, 1104.0603.

[105]  Robert A. Rankin,et al.  A Minimum Problem for the Epstein Zeta-Function , 1953, Proceedings of the Glasgow Mathematical Association.

[106]  Generalized Hartree-Fock theory and the Hubbard model , 1993, cond-mat/9312044.

[107]  Mathieu Lewin,et al.  Solutions of the Multiconfiguration Equations in Quantum Chemistry , 2004 .

[108]  M. Levy Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[109]  L. Grafakos Classical Fourier Analysis , 2010 .

[110]  Bound for the Kinetic Energy of Fermions Which Proves the Stability of Matter , 1975 .

[111]  Claudia Klüppelberg,et al.  Smoothing of Transport Plans with Fixed Marginals and Rigorous Semiclassical Limit of the Hohenberg–Kohn Functional , 2017, 1706.05676.

[112]  Jean-Pierre Gossez,et al.  Strict Monotonicity of Eigenvalues and Unique Continuation , 1992 .

[113]  Luigi De Pascale,et al.  Optimal transport with Coulomb cost and the semiclassical limit of Density Functional Theory , 2017 .

[114]  Gero Friesecke,et al.  The Multiconfiguration Equations for Atoms and Molecules: Charge Quantization and Existence of Solutions , 2003 .

[115]  P. Gori-Giorgi,et al.  Density functional theory for strongly-interacting electrons: perspectives for physics and chemistry. , 2010, Physical chemistry chemical physics : PCCP.

[116]  R. Frank,et al.  Restriction theorems for orthonormal functions, Strichartz inequalities, and uniform Sobolev estimates , 2014, 1404.2817.

[117]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[118]  P. T. Nam,et al.  Fractional Hardy–Lieb–Thirring and Related Inequalities for Interacting Systems , 2015, 1501.04570.

[119]  J. Dolbeault,et al.  Lieb-Thirring inequalities with improved constants , 2007, 0708.1165.

[120]  E. Lieb,et al.  The Thomas-Fermi theory of atoms, molecules and solids , 1977 .

[121]  J. Hansen Statistical Mechanics of Dense Ionized Matter. I. Equilibrium Properties of the Classical One-Component Plasma , 1973 .

[122]  Mathieu Lewin Geometric methods for nonlinear many-body quantum systems , 2010, 1009.2836.

[123]  E. Lieb,et al.  Improved Lieb-Oxford exchange-correlation inequality with gradient correction , 2014, 1408.3358.

[124]  P. Lammert In search of the Hohenberg-Kohn theorem , 2014, 1412.3876.

[125]  Brendan Pass Multi-marginal optimal transport: theory and applications , 2014, 1406.0026.

[126]  Mathieu Lewin,et al.  The Crystallization Conjecture: A Review , 2015, 1504.01153.

[127]  R. Nesbet Thomas–Fermi theory revisited , 2002 .

[128]  Peter Sarnak,et al.  Minima of Epstein’s Zeta function and heights of flat tori , 2006 .

[129]  Carleman Estimates and Absence of Embedded Eigenvalues , 2005, math-ph/0508052.

[130]  Thierry Champion,et al.  Continuity and Estimates for Multimarginal Optimal Transportation Problems with Singular Costs , 2016, 1608.08780.

[131]  Maria Colombo,et al.  Counterexamples in multimarginal optimal transport with Coulomb cost and spherically symmetric data , 2015, 1507.08522.

[132]  P. T. Nam,et al.  Bogoliubov Spectrum of Interacting Bose Gases , 2012, 1211.2778.

[133]  P. H. Diananda Notes on two lemmas concerning the Epstein zeta-function , 1964, Proceedings of the Glasgow Mathematical Association.

[134]  Martin Schechter,et al.  Unique continuation for Schrodinger operators with unbounded potentials , 1980 .

[135]  M. Ruskai N‐Representability Problem: Particle‐Hole Equivalence , 1970 .

[136]  E. Lieb,et al.  The thermodynamic limit for jellium , 1975 .

[137]  Codina Cotar,et al.  Next-order asymptotic expansion for N-marginal optimal transport with Coulomb and Riesz costs , 2017, Advances in Mathematics.

[138]  Michael Loss,et al.  Stability of Matter , 2005 .

[139]  Olivier Bokanowski,et al.  Local density approximations for the energy of a periodic Coulomb model , 2003 .

[140]  Jonathan M. Borwein,et al.  Lattice Sums Then and Now , 2013 .

[141]  L. H. Thomas The calculation of atomic fields , 1927, Mathematical Proceedings of the Cambridge Philosophical Society.