A linear-time benchmarking tool for generalized surface codes

Quantum information processors need to be protected against errors and faults. One of the most widely considered fault-tolerant architecture is based on surface codes. While the general principles of these codes are well understood and basic code properties such as minimum distance and rate are easy to characterize, a code's average performance depends on the detailed geometric layout of the qubits. To date, optimizing a surface code architecture and comparing different geometric layouts relies on costly numerical simulations. Here, we propose a benchmarking algorithm for simulating the performance of surface codes, and generalizations thereof, that runs in linear time. We implemented this algorithm in a software that generates performance reports and allows to quickly compare different architectures.

[1]  Gilles Zémor,et al.  Quantum Expander Codes , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[2]  David J. C. MacKay,et al.  Sparse-graph codes for quantum error correction , 2004, IEEE Transactions on Information Theory.

[3]  C. H. Bennett,et al.  Capacities of Quantum Erasure Channels , 1997, quant-ph/9701015.

[4]  T. Beth,et al.  Codes for the quantum erasure channel , 1996, quant-ph/9610042.

[5]  H. Bombin,et al.  Topological quantum distillation. , 2006, Physical review letters.

[6]  Benjamin J. Brown,et al.  Poking holes and cutting corners to achieve Clifford gates with the surface code , 2016, 1609.04673.

[7]  David Poulin,et al.  Generalized surface codes and packing of logical qubits , 2016, ArXiv.

[8]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[9]  David Poulin,et al.  On the iterative decoding of sparse quantum codes , 2008, Quantum Inf. Comput..

[10]  R. Ho Algebraic Topology , 2022 .

[11]  Michael H. Freedman,et al.  Projective Plane and Planar Quantum Codes , 2001, Found. Comput. Math..

[12]  Gilles Zémor,et al.  Upper bounds on the rate of low density stabilizer codes for the quantum erasure channel , 2012, Quantum Inf. Comput..

[13]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[14]  Sean D Barrett,et al.  Fault tolerant quantum computation with very high threshold for loss errors. , 2010, Physical review letters.

[15]  Nicolas Delfosse,et al.  Tradeoffs for reliable quantum information storage in surface codes and color codes , 2013, 2013 IEEE International Symposium on Information Theory.

[16]  Robert Raussendorf,et al.  Topological fault-tolerance in cluster state quantum computation , 2007 .

[17]  Robert Raussendorf,et al.  Fault-tolerant quantum computation with high threshold in two dimensions. , 2007, Physical review letters.

[18]  P. Giblin Graphs, surfaces, and homology , 1977 .

[19]  M. Freedman,et al.  Z(2)-Systolic Freedom and Quantum Codes , 2002 .

[20]  S. Bravyi,et al.  Quantum self-correction in the 3D cubic code model. , 2013, Physical review letters.

[21]  Gilles Zémor,et al.  Quantum erasure-correcting codes and percolation on regular tilings of the hyperbolic plane , 2010, 2010 IEEE Information Theory Workshop.

[22]  R. Raussendorf,et al.  A fault-tolerant one-way quantum computer , 2005, quant-ph/0510135.

[23]  Isaac H. Kim Quantum Codes on Hurwitz Surfaces , 2007 .

[24]  L. Pryadko,et al.  Fault tolerance of quantum low-density parity check codes with sublinear distance scaling , 2013 .

[25]  Simon J. Devitt,et al.  Surface code error correction on a defective lattice , 2016, 1607.00627.

[26]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[27]  Jean-Pierre Tillich,et al.  A decoding algorithm for CSS codes using the X/Z correlations , 2014, 2014 IEEE International Symposium on Information Theory.

[28]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[29]  Barbara M. Terhal,et al.  Constructions and Noise Threshold of Hyperbolic Surface Codes , 2015, IEEE Transactions on Information Theory.

[30]  H. Bombin,et al.  Topological order with a twist: Ising anyons from an Abelian model. , 2010, Physical review letters.

[31]  Gilles Zémor,et al.  On Cayley Graphs, Surface Codes, and the Limits of Homological Coding for Quantum Error Correction , 2009, IWCC.

[32]  Daniel Gottesman,et al.  Fault-tolerant quantum computation with constant overhead , 2013, Quantum Inf. Comput..

[33]  A. Kitaev,et al.  Quantum codes on a lattice with boundary , 1998, quant-ph/9811052.

[34]  Rüdiger L. Urbanke,et al.  Modern Coding Theory , 2008 .

[35]  Jack Edmonds,et al.  Maximum matching and a polyhedron with 0,1-vertices , 1965 .

[36]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.