Heterogeneous Phase Transformation Pathways in Additively Manufactured Al-Ce-Mn Alloys

[1]  V. Paquit,et al.  A stochastic scan strategy for grain structure control in complex geometries using electron beam powder bed fusion , 2021 .

[2]  A. Plotkowski,et al.  Al-Cu-Ce(-Zr) alloys with an exceptional combination of additive processability and mechanical properties , 2021, Additive Manufacturing.

[3]  A. Plotkowski,et al.  Primary solidification of ternary compounds in Al-rich Al–Ce–Mn alloys , 2020 .

[4]  A. Plotkowski,et al.  Microstructure and properties of a high temperature Al–Ce–Mn alloy produced by additive manufacturing , 2020 .

[5]  U. Jansson,et al.  The effect of laser scanning strategies on texture, mechanical properties, and site-specific grain orientation in selective laser melted 316L SS , 2020, Materials & Design.

[6]  A. Plotkowski,et al.  An additively manufactured AlCuMnZr alloy microstructure and tensile mechanical properties , 2020 .

[7]  Carolin Körner,et al.  Creep properties of single crystal Ni-base superalloys (SX): A comparison between conventionally cast and additive manufactured CMSX-4 materials , 2019, Materials Science and Engineering: A.

[8]  I. Todd,et al.  Additive manufacturing titanium components with isotropic or graded properties by hybrid electron beam melting/hot isostatic pressing powder processing , 2019, Scientific Reports.

[9]  C. Kenel,et al.  Microstructure and mechanical properties of Al-Mg-Zr alloys processed by selective laser melting , 2018, Acta Materialia.

[10]  W. Wolf,et al.  Insight into the complex ternary phase behavior in Al-Mn-Ce alloys , 2017 .

[11]  Ryan R. Dehoff,et al.  Localized melt-scan strategy for site specific control of grain size and primary dendrite arm spacing in electron beam additive manufacturing , 2017 .

[12]  Mark R. Stoudt,et al.  Formation of the Ni3Nb δ-Phase in Stress-Relieved Inconel 625 Produced via Laser Powder-Bed Fusion Additive Manufacturing , 2017, Metallurgical and Materials Transactions A.

[13]  L. Allard,et al.  Comparative Evaluation of Cast Aluminum Alloys for Automotive Cylinder Heads: Part I—Microstructure Evolution , 2017, Metallurgical and Materials Transactions A.

[14]  Ryan R. Dehoff,et al.  Evaluation of an Al-Ce alloy for laser additive manufacturing , 2017 .

[15]  C. Bolfarini,et al.  Design and production of Al-Mn-Ce alloys with tailored properties , 2016 .

[16]  C. Kiminami,et al.  Reassessment of the effects of Ce on quasicrystal formation and microstructural evolution in rapidly solidified Al–Mn alloys , 2015 .

[17]  Ryan R. Dehoff,et al.  Site specific control of crystallographic grain orientation through electron beam additive manufacturing , 2015 .

[18]  T. Watson,et al.  Phase stability in a powder-processed Al–Mn–Ce alloy , 2014, Journal of Materials Science.

[19]  Brian H. Toby,et al.  GSAS‐II: the genesis of a modern open‐source all purpose crystallography software package , 2013 .

[20]  Jyoti Mazumder,et al.  Evolution of microstructure in laser deposited Al-11.28%Si alloy , 2012 .

[21]  Ying Yang,et al.  PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation , 2009 .

[22]  K. E. Easterling,et al.  Phase Transformations in Metals and Alloys (Revised Reprint) , 2009 .

[23]  Jun Wang,et al.  A dedicated powder diffraction beamline at the advanced photon source: commissioning and early operational results. , 2008, The Review of scientific instruments.

[24]  N. Ünlü Preparation of high quality Al TEM specimens via a double-jet electropolishing technique , 2008 .

[25]  D Lawrence,et al.  In situ site-specific specimen preparation for atom probe tomography. , 2007, Ultramicroscopy.

[26]  Mariette Hellenbrandt,et al.  The Inorganic Crystal Structure Database (ICSD)—Present and Future , 2004 .

[27]  Y. Chang,et al.  Diffusion coefficients of some solutes in fcc and liquid Al: critical evaluation and correlation , 2003 .

[28]  S. David,et al.  Time-resolved X-ray diffraction investigation of primary weld solidification in Fe-C-Al-Mn steel welds , 2002 .

[29]  Akihisa Inoue,et al.  High-strength aluminum alloys containing nanoquasicrystalline particles , 2000 .

[30]  Wolfgang Jeitschko,et al.  Preparation and Crystal Structure of the Intermetallics La4Mo7Al51and La4W7Al51 , 1999 .

[31]  C. Weiping Diffusion of cerium in the aluminium lattice , 1997 .

[32]  S. David,et al.  Analysis of solidification microstructures in Fe-Ni-Cr single-crystal welds , 1990 .

[33]  R. Trivedi,et al.  Theory of eutectic growth under rapid solidification conditions , 1987 .

[34]  Wilfried Kurz,et al.  Theory of Microstructural Development during Rapid Solidification , 1986 .

[35]  M. Fine Precipitation hardening of aluminum alloys , 1975 .

[36]  H. Kimura,et al.  Nucleation of θ′ precipitates in an Al4% Cu alloy , 1970 .

[37]  B. Noble Theta-prime precipitation in aluminium-copper-cadmium alloys , 1968 .

[38]  A. Phillion,et al.  Revisiting solidification microstructure selection maps in the frame of additive manufacturing , 2020 .

[39]  V. Lubarda On the effective lattice parameter of binary alloys , 2003 .