Extending linear relaxation for non-square matrices and soft constraints

Linear relaxation is a common method for solving linear problems, as they occur in science and engineering. In contrast to direct methods such as Gauss-elimination or QR-factorization, linear relaxation is particularly efficient for problems with sparse matrices, as they appear in constraint-based user interface (UI) layout specifications. However, the linear relaxation method as described in the literature has its limitations: it works only with square matrices and does not support soft constraints, which makes it inapplicable to the UI layout problem.To overcome these limitations we propose two algorithms for selecting the pivot elements used during linear relaxation: random pivot assignment, and a more complex deterministic pivot assignment. Furthermore, we propose three algorithms for solving specifications containing soft constraints: prioritized IIS detection, prioritized deletion filtering and prioritized grouping constraints. With these algorithms, it is possible to prioritize constraints: if there are conflicting constraints in a specification, as it is commonly the case for UI layout, only the constraints with lower priority are violated to resolve the conflicts.The performance and convergence of the proposed algorithms are evaluated empirically using randomly generated UI layout specifications of various sizes. The results show that our best linear relaxation algorithm performs significantly better than Matlab's LINPROG, a well-known efficient linear programming solver.

[1]  Kim Marriott,et al.  A Tableau Based Constraint Solving Toolkit for Interactive Graphical Applications , 1998, CP.

[2]  S. Agmon The Relaxation Method for Linear Inequalities , 1954, Canadian Journal of Mathematics.

[3]  Alexander Cloninger,et al.  Hildreth's algorithm with applications to soft constraints for user interface layout , 2015, J. Comput. Appl. Math..

[4]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[5]  John W. Chinneck,et al.  Fast Heuristics for the Maximum Feasible Subsystem Problem , 2001, INFORMS J. Comput..

[6]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[7]  Maria Luisa Bonet,et al.  Solving (Weighted) Partial MaxSAT through Satisfiability Testing , 2009, SAT.

[8]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[9]  Christof Lutteroth,et al.  Extending Linear Relaxation for User Interface Layout , 2012, 2012 IEEE 24th International Conference on Tools with Artificial Intelligence.

[10]  O. Axelsson Iterative solution methods , 1995 .

[11]  Iain S. Duff,et al.  On Algorithms For Permuting Large Entries to the Diagonal of a Sparse Matrix , 2000, SIAM J. Matrix Anal. Appl..

[12]  Michael T. Heath,et al.  Scientific Computing: An Introductory Survey , 1996 .

[13]  Hamdy A. Taha,et al.  Operations research: an introduction / Hamdy A. Taha , 1982 .

[14]  Feng Ding,et al.  Iterative least-squares solutions of coupled Sylvester matrix equations , 2005, Syst. Control. Lett..

[15]  Peter J. Stuckey,et al.  Solving linear arithmetic constraints for user interface applications , 1997, UIST '97.

[16]  Albert Oliveras,et al.  MiniMaxSat: A New Weighted Max-SAT Solver , 2007, SAT.

[17]  Satoshi Matsuoka,et al.  Locally Simultaneous Constraint Satisfaction , 1994, PPCP.

[18]  B. Datta Numerical Linear Algebra and Applications , 1995 .

[19]  Peter J. Stuckey,et al.  The Cassowary linear arithmetic constraint solving algorithm , 2001, TCHI.

[20]  Louis A. Hageman,et al.  Iterative Solution of Large Linear Systems. , 1971 .

[21]  Olvi L. Mangasarian,et al.  Misclassification minimization , 1994, J. Glob. Optim..

[22]  P. M. Wognum,et al.  Diagnosing and Solving Over-Determined Constraint Satisfaction Problems , 1993, IJCAI.

[23]  Alan Borning,et al.  Constraint hierarchies , 1992 .

[24]  Edoardo Amaldi,et al.  From finding maximum feasible subsystems of linear systems to feedforward neural network design , 1994 .

[25]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[26]  Kaile Su,et al.  Within-problem Learning for Efficient Lower Bound Computation in Max-SAT Solving , 2008, AAAI.

[27]  Ulrich Junker,et al.  QUICKXPLAIN: Preferred Explanations and Relaxations for Over-Constrained Problems , 2004, AAAI.

[28]  Gene H. Golub,et al.  Matrix computations , 1983 .

[29]  J. Miller Numerical Analysis , 1966, Nature.

[30]  Eugene C. Freuder,et al.  Partial Constraint Satisfaction , 1989, IJCAI.

[31]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[32]  John W. Chinneck,et al.  Analyzing Infeasible Mixed-Integer and Integer Linear Programs , 1999, INFORMS J. Comput..

[33]  Felip Manyà,et al.  Exploiting Cycle Structures in Max-SAT , 2009, SAT.

[34]  Leslie V. Foster,et al.  Modifications of the Normal Equations Method that are Numerically Stable , 1991 .

[35]  Christof Lutteroth,et al.  Kaczmarz Algorithm with Soft Constraints for User Interface Layout , 2013, 2013 IEEE 25th International Conference on Tools with Artificial Intelligence.

[36]  Maria Luisa Bonet,et al.  A New Algorithm for Weighted Partial MaxSAT , 2010, AAAI.

[37]  Iain S. Duff,et al.  The Design and Use of Algorithms for Permuting Large Entries to the Diagonal of Sparse Matrices , 1999, SIAM J. Matrix Anal. Appl..

[38]  Pedro Meseguer,et al.  Current Approaches for Solving Over-Constrained Problems , 2004, Constraints.

[39]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[40]  Hanif D. Sherali,et al.  Linear programming and network flows (2nd ed.) , 1990 .

[41]  Heinz-Gerd Zimmer Johannes Müller , 2006, Clinical cardiology.

[42]  Jack Poulson,et al.  Scientific computing , 2013, XRDS.

[43]  John W. Chinneck,et al.  Locating Minimal Infeasible Constraint Sets in Linear Programs , 1991, INFORMS J. Comput..

[44]  Edoardo Amaldi,et al.  A two-phase relaxation-based heuristic for the maximum feasible subsystem problem , 2008, Comput. Oper. Res..

[45]  M. Benzi Preconditioning techniques for large linear systems: a survey , 2002 .

[46]  Christof Lutteroth,et al.  Constraint solving for beautiful user interfaces: how solving strategies support layout aesthetics , 2012, CHINZ '12.

[47]  Hiroshi Masuda,et al.  A Constrained Least Squares Approach to Interactive Mesh Deformation , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[48]  Jean-Louis Goffin,et al.  The Relaxation Method for Solving Systems of Linear Inequalities , 1980, Math. Oper. Res..

[49]  Satoshi Matsuoka,et al.  A Foundation of Solution Methods for Constraint Hierarchies , 2004, Constraints.

[50]  Holger Rauhut,et al.  Random Sampling of Sparse Trigonometric Polynomials, II. Orthogonal Matching Pursuit versus Basis Pursuit , 2008, Found. Comput. Math..

[51]  H. Rauhut Random Sampling of Sparse Trigonometric Polynomials , 2005, math/0512642.

[52]  Michael Sannella Skyblue: a multi-way local propagation constraint solver for user interface construction , 1994, UIST '94.

[53]  Hiroshi Hosobe A Simplex-Based Scalable Linear Constraint Solver for User Interface Applications , 2011, 2011 IEEE 23rd International Conference on Tools with Artificial Intelligence.

[54]  Hiroshi Hosobe,et al.  A Scalable Linear Constraint Solver for User Interface Construction , 2000, CP.

[55]  Mehrdad Tamiz,et al.  Detecting iis in infeasible linear programmes using techniques from goal programming , 1996, Comput. Oper. Res..

[56]  Marc E. Pfetsch,et al.  Konrad-zuse-zentrum F ¨ Ur Informationstechnik Berlin Branch-and-cut for the Maximum Feasible Subsystem Problem Branch-and-cut for the Maximum Feasible Subsystem Problem , 2022 .

[57]  Bjørn N. Freeman-Benson,et al.  An incremental constraint solver , 1990, CACM.

[58]  D. Ruiz A Scaling Algorithm to Equilibrate Both Rows and Columns Norms in Matrices 1 , 2001 .

[59]  Vasco M. Manquinho,et al.  Algorithms for Weighted Boolean Optimization , 2009, SAT.

[60]  Christof Lutteroth,et al.  Domain Specific High-Level Constraints for User Interface Layout , 2008, Constraints.