Coupling Molecular Dynamics and Continua with Weak Constraints
暂无分享,去创建一个
Christoph Lenzen | Rolf Krause | Dorian Krause | Konstantin Fackeldey | C. Lenzen | R. Krause | K. Fackeldey | Dorian Krause
[1] Michael Griebel,et al. Numerical Simulation in Molecular Dynamics: Numerics, Algorithms, Parallelization, Applications , 2007 .
[2] Hachmi Ben Dhia,et al. Multiscale mechanical problems: the Arlequin method , 1998 .
[3] Florian Theil,et al. Validity and Failure of the Cauchy-Born Hypothesis in a Two-Dimensional Mass-Spring Lattice , 2002, J. Nonlinear Sci..
[4] Abraham. Dynamics of Brittle Fracture with Variable Elasticity. , 1996, Physical review letters.
[5] K. Fackeldey,et al. The Weak Coupling Method for Coupling Continuum Mechanics with Molecular Dynamics , 2009 .
[6] Chrysoula Tsogka,et al. Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic hete , 1998 .
[7] Shardool U. Chirputkar,et al. Coupled Atomistic/Continuum Simulation based on Extended Space-Time Finite Element Method , 2008 .
[8] Jean-Pierre Berenger,et al. A perfectly matched layer for the absorption of electromagnetic waves , 1994 .
[9] M. Griebel,et al. Molecular Dynamics Simulations of the Mechanical Properties of Polyethylene-Carbon , 2005 .
[10] Rolf Krause,et al. Quadrature and Implementation of the Weak Coupling Method , 2008 .
[11] Marc Alexander Schweitzer,et al. A Parallel Multilevel Partition of Unity Method for Elliptic Partial Differential Equations , 2003, Lecture Notes in Computational Science and Engineering.
[12] Scott T. Miller,et al. Adaptive spacetime method using Riemann jump conditions for coupled atomistic-continuum dynamics , 2010, J. Comput. Phys..
[13] T. Belytschko,et al. A bridging domain method for coupling continua with molecular dynamics , 2004 .
[14] Faker Ben Belgacem,et al. The Mortar finite element method with Lagrange multipliers , 1999, Numerische Mathematik.
[15] P. Monk,et al. Optimizing the Perfectly Matched Layer , 1998 .
[16] Michael Griebel,et al. Derivation of Higher Order Gradient Continuum Models from Atomistic Models for Crystalline Solids , 2005, Multiscale Model. Simul..
[17] P. G. Ciarlet,et al. Three-dimensional elasticity , 1988 .
[18] M. Born,et al. Wave Propagation in Periodic Structures , 1946, Nature.
[19] D. Givoli. Non-reflecting boundary conditions , 1991 .
[20] Tamara G. Kolda,et al. An overview of the Trilinos project , 2005, TOMS.
[21] Ronald E. Miller,et al. Atomistic/continuum coupling in computational materials science , 2003 .
[22] Markus J. Buehler,et al. Atomistic Modeling of Materials Failure , 2008 .
[23] Pavel B. Bochev,et al. A Mathematical Framework for Multiscale Science and Engineering: The Variational Multiscale Method and Interscale Transfer Operators , 2007 .
[24] Timothy A. Davis,et al. Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.
[25] Max Gunzburger,et al. Bridging Methods for Atomistic-to-Continuum Coupling and Their Implementation , 2009 .
[26] I. Babuska,et al. The Partition of Unity Method , 1997 .
[27] Rolf Krause,et al. Numerical validation of a constraints-based multiscale simulation method for solids , 2011 .
[28] Timothy A. Davis,et al. A column pre-ordering strategy for the unsymmetric-pattern multifrontal method , 2004, TOMS.
[29] E Weinan,et al. A multiscale coupling method for the modeling of dynamics of solids with application to brittle cracks , 2010, J. Comput. Phys..
[30] Timothy A. Davis,et al. A combined unifrontal/multifrontal method for unsymmetric sparse matrices , 1999, TOMS.
[31] Wing Kam Liu,et al. Nonlinear Finite Elements for Continua and Structures , 2000 .
[32] Shaofan Li,et al. Perfectly matched multiscale simulations , 2005 .
[33] Shaofan Li,et al. Perfectly matched multiscale simulations for discrete lattice systems: Extension to multiple dimensions , 2006 .
[34] Michael Griebel,et al. A Particle-Partition of Unity Method for the Solution of Elliptic, Parabolic, and Hyperbolic PDEs , 2000, SIAM J. Sci. Comput..
[35] Farid F. Abraham,et al. How fast can cracks move? A research adventure in materials failure using millions of atoms and big computers , 2003 .
[36] Paul T. Bauman,et al. Computational analysis of modeling error for the coupling of particle and continuum models by the Arlequin method , 2008 .
[37] Michael Griebel,et al. Numerische Simulation in der Moleküldynamik , 2004, Numerische Simulation in der Moleküldynamik.
[38] Michael Griebel,et al. Molecular dynamics simulations of the elastic moduli of polymer–carbon nanotube composites , 2004 .
[39] Mei Xu. Concurrent Coupling of Atomistic and Continuum Models , 2009 .
[40] Timothy A. Davis,et al. An Unsymmetric-pattern Multifrontal Method for Sparse Lu Factorization , 1993 .
[41] Patrick A. Klein,et al. Coupled atomistic-continuum simulations using arbitrary overlapping domains , 2006, J. Comput. Phys..
[42] Holian,et al. Fracture simulations using large-scale molecular dynamics. , 1995, Physical review. B, Condensed matter.
[43] P. Ciarlet,et al. Mathematical elasticity, volume I: Three-dimensional elasticity , 1989 .
[44] D. Shepard. A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.
[45] A R Plummer,et al. Introduction to Solid State Physics , 1967 .
[46] M. Born,et al. Dynamical Theory of Crystal Lattices , 1954 .
[47] Olivier Coulaud,et al. Ghost force reduction and spectral analysis of the 1D bridging method , 2008 .
[48] J. Q. Broughton,et al. Concurrent coupling of length scales: Methodology and application , 1999 .
[49] Rolf Krause,et al. Efficient simulation of multi‐body contact problems on complex geometries: A flexible decomposition approach using constrained minimization , 2009 .
[50] van der Erik Giessen,et al. Micromechanics of Fracture: Connecting Physics to Engineering , 2001 .
[51] X. Blanc,et al. From Molecular Models¶to Continuum Mechanics , 2002 .
[52] R. Krause,et al. Multiscale coupling in function space—weak coupling between molecular dynamics and continuum mechanics , 2009 .
[53] C. Tsogka,et al. Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media , 2001 .
[54] Gregory J. Wagner,et al. Coupling of atomistic and continuum simulations using a bridging scale decomposition , 2003 .
[55] C. Bernardi,et al. A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .
[56] Harold S. Park,et al. An introduction and tutorial on multiple-scale analysis in solids , 2004 .
[57] John A. Gunnels,et al. Simulating solidification in metals at high pressure: The drive to petascale computing , 2006 .
[58] H. Rentz-Reichert,et al. UG – A flexible software toolbox for solving partial differential equations , 1997 .
[59] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.