Coupling Molecular Dynamics and Continua with Weak Constraints

One of the most challenging problems in dynamic concurrent multiscale simulations is the reflectionless transfer of physical quantities between the different scales. In particular, when coupling molecular dynamics and finite element discretizations in solid body mechanics, often spurious wave reflections are introduced by the applied coupling technique. The reflected waves are typically of high frequency and are arguably of little importance in the domain where the finite element discretization drives the simulation. In this work, we provide an analysis of this phenomenon. Based on the gained insight, we derive a new coupling approach, which neatly separates high and low frequency waves. Whereas low frequency waves are permitted to bridge the scales, high frequency waves can be removed by applying damping techniques without affecting the coupled share of the solution. As a consequence, our new method almost completely eliminates unphysical wave reflections and deals in a consistent way with waves of arbit...

[1]  Michael Griebel,et al.  Numerical Simulation in Molecular Dynamics: Numerics, Algorithms, Parallelization, Applications , 2007 .

[2]  Hachmi Ben Dhia,et al.  Multiscale mechanical problems: the Arlequin method , 1998 .

[3]  Florian Theil,et al.  Validity and Failure of the Cauchy-Born Hypothesis in a Two-Dimensional Mass-Spring Lattice , 2002, J. Nonlinear Sci..

[4]  Abraham Dynamics of Brittle Fracture with Variable Elasticity. , 1996, Physical review letters.

[5]  K. Fackeldey,et al.  The Weak Coupling Method for Coupling Continuum Mechanics with Molecular Dynamics , 2009 .

[6]  Chrysoula Tsogka,et al.  Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic hete , 1998 .

[7]  Shardool U. Chirputkar,et al.  Coupled Atomistic/Continuum Simulation based on Extended Space-Time Finite Element Method , 2008 .

[8]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[9]  M. Griebel,et al.  Molecular Dynamics Simulations of the Mechanical Properties of Polyethylene-Carbon , 2005 .

[10]  Rolf Krause,et al.  Quadrature and Implementation of the Weak Coupling Method , 2008 .

[11]  Marc Alexander Schweitzer,et al.  A Parallel Multilevel Partition of Unity Method for Elliptic Partial Differential Equations , 2003, Lecture Notes in Computational Science and Engineering.

[12]  Scott T. Miller,et al.  Adaptive spacetime method using Riemann jump conditions for coupled atomistic-continuum dynamics , 2010, J. Comput. Phys..

[13]  T. Belytschko,et al.  A bridging domain method for coupling continua with molecular dynamics , 2004 .

[14]  Faker Ben Belgacem,et al.  The Mortar finite element method with Lagrange multipliers , 1999, Numerische Mathematik.

[15]  P. Monk,et al.  Optimizing the Perfectly Matched Layer , 1998 .

[16]  Michael Griebel,et al.  Derivation of Higher Order Gradient Continuum Models from Atomistic Models for Crystalline Solids , 2005, Multiscale Model. Simul..

[17]  P. G. Ciarlet,et al.  Three-dimensional elasticity , 1988 .

[18]  M. Born,et al.  Wave Propagation in Periodic Structures , 1946, Nature.

[19]  D. Givoli Non-reflecting boundary conditions , 1991 .

[20]  Tamara G. Kolda,et al.  An overview of the Trilinos project , 2005, TOMS.

[21]  Ronald E. Miller,et al.  Atomistic/continuum coupling in computational materials science , 2003 .

[22]  Markus J. Buehler,et al.  Atomistic Modeling of Materials Failure , 2008 .

[23]  Pavel B. Bochev,et al.  A Mathematical Framework for Multiscale Science and Engineering: The Variational Multiscale Method and Interscale Transfer Operators , 2007 .

[24]  Timothy A. Davis,et al.  Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.

[25]  Max Gunzburger,et al.  Bridging Methods for Atomistic-to-Continuum Coupling and Their Implementation , 2009 .

[26]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[27]  Rolf Krause,et al.  Numerical validation of a constraints-based multiscale simulation method for solids , 2011 .

[28]  Timothy A. Davis,et al.  A column pre-ordering strategy for the unsymmetric-pattern multifrontal method , 2004, TOMS.

[29]  E Weinan,et al.  A multiscale coupling method for the modeling of dynamics of solids with application to brittle cracks , 2010, J. Comput. Phys..

[30]  Timothy A. Davis,et al.  A combined unifrontal/multifrontal method for unsymmetric sparse matrices , 1999, TOMS.

[31]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[32]  Shaofan Li,et al.  Perfectly matched multiscale simulations , 2005 .

[33]  Shaofan Li,et al.  Perfectly matched multiscale simulations for discrete lattice systems: Extension to multiple dimensions , 2006 .

[34]  Michael Griebel,et al.  A Particle-Partition of Unity Method for the Solution of Elliptic, Parabolic, and Hyperbolic PDEs , 2000, SIAM J. Sci. Comput..

[35]  Farid F. Abraham,et al.  How fast can cracks move? A research adventure in materials failure using millions of atoms and big computers , 2003 .

[36]  Paul T. Bauman,et al.  Computational analysis of modeling error for the coupling of particle and continuum models by the Arlequin method , 2008 .

[37]  Michael Griebel,et al.  Numerische Simulation in der Moleküldynamik , 2004, Numerische Simulation in der Moleküldynamik.

[38]  Michael Griebel,et al.  Molecular dynamics simulations of the elastic moduli of polymer–carbon nanotube composites , 2004 .

[39]  Mei Xu Concurrent Coupling of Atomistic and Continuum Models , 2009 .

[40]  Timothy A. Davis,et al.  An Unsymmetric-pattern Multifrontal Method for Sparse Lu Factorization , 1993 .

[41]  Patrick A. Klein,et al.  Coupled atomistic-continuum simulations using arbitrary overlapping domains , 2006, J. Comput. Phys..

[42]  Holian,et al.  Fracture simulations using large-scale molecular dynamics. , 1995, Physical review. B, Condensed matter.

[43]  P. Ciarlet,et al.  Mathematical elasticity, volume I: Three-dimensional elasticity , 1989 .

[44]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[45]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[46]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .

[47]  Olivier Coulaud,et al.  Ghost force reduction and spectral analysis of the 1D bridging method , 2008 .

[48]  J. Q. Broughton,et al.  Concurrent coupling of length scales: Methodology and application , 1999 .

[49]  Rolf Krause,et al.  Efficient simulation of multi‐body contact problems on complex geometries: A flexible decomposition approach using constrained minimization , 2009 .

[50]  van der Erik Giessen,et al.  Micromechanics of Fracture: Connecting Physics to Engineering , 2001 .

[51]  X. Blanc,et al.  From Molecular Models¶to Continuum Mechanics , 2002 .

[52]  R. Krause,et al.  Multiscale coupling in function space—weak coupling between molecular dynamics and continuum mechanics , 2009 .

[53]  C. Tsogka,et al.  Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media , 2001 .

[54]  Gregory J. Wagner,et al.  Coupling of atomistic and continuum simulations using a bridging scale decomposition , 2003 .

[55]  C. Bernardi,et al.  A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .

[56]  Harold S. Park,et al.  An introduction and tutorial on multiple-scale analysis in solids , 2004 .

[57]  John A. Gunnels,et al.  Simulating solidification in metals at high pressure: The drive to petascale computing , 2006 .

[58]  H. Rentz-Reichert,et al.  UG – A flexible software toolbox for solving partial differential equations , 1997 .

[59]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.