Critical review of current trends in shape memory alloy actuators for intelligent robots

Purpose – The purpose of this paper is to review the current application areas of shape memory alloy (SMA) actuators in intelligent robotic systems and devices.Design/methodology/approach – This paper analyses how actuation and sensing functions of the SMA actuator have been exploited and incorporated in micro and macro robotic devices, developed for medical and non‐medical applications. The speed of response of SMA actuator mostly depends upon its shape and size, addition and removal of heat and the bias force applied. All these factors have impact on the overall size of the robotic device and the degree of freedom (dof) obtained and hence, a comprehensive survey is made highlighting these aspects. Also described are the mechatronic aspects like the software and hardware used in an industrial environment for the control of such nonlinear actuator and the type of sensory feedback devices incorporated for obtaining better control, positioning accuracy and fast response.Findings – SMA actuators find wide ap...

[1]  Byung Kyu Kim,et al.  Institute of Physics Publishing Smart Materials and Structures a Superelastic Alloy Microgripper with Embedded Electromagnetic Actuators and Piezoelectric Force Sensors: a Numerical and Experimental Study , 2022 .

[2]  Daniel J. Harvey,et al.  The Development of a Prosthetic Arm , 2001 .

[3]  Steven Dubowsky,et al.  Experimental Demonstrations for a New Design Paradigm in Space Robotics , 2000, ISER.

[4]  Dimitris C. Lagoudas,et al.  Development of a shape memory alloy actuated biomimetic vehicle , 2000 .

[5]  K. Tomita,et al.  Get Back in Shape ! A Hardware Prototype Self-Reconfigurable Modular Microrobot that Uses Shape Memory Alloy , 2001 .

[6]  Sridhar Kota,et al.  Biomimetic Compliant System for Smart Actuator-Driven Aquatic Propulsion: Preliminary Results , 2003 .

[7]  Paolo Dario,et al.  An integrated approach for the design and development of a grasping and manipulation system in humanoid robotics , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[8]  S. Shankar Sastry,et al.  Applications of micromechatronics in minimally invasive surgery , 1998 .

[9]  Russell H. Taylor,et al.  A dexterous system for laryngeal surgery , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[10]  M G Faulkner,et al.  Development of a shape memory alloy actuator for a robotic eye prosthesis , 2005 .

[11]  Savas Dilibal,et al.  Development of shape memory actuated ITU Robot Hand and its mine clearance compatibility , 2004 .

[12]  Nabil Simaan,et al.  A Dexterous System for Laryngeal Surgery Multi-Backbone Bending Snake-like Slaves for Teleoperated Dexterous Surgical Tool Manipulation , 2004 .

[13]  G. Lim,et al.  Future of active catheters , 1996 .

[14]  Russell H. Taylor,et al.  Medical robotics in computer-integrated surgery , 2003, IEEE Trans. Robotics Autom..

[15]  O. Rediniotis,et al.  Experiments and analysis of an active hydrofoil with SMA actuators , 1998 .

[16]  Wei-Min Shen,et al.  Reconnectable joints for self-reconfigurable robots , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[17]  Paolo Dario,et al.  A SMA actuated artificial earthworm , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[18]  Dominiek Reynaerts,et al.  Assembly of Microsystems , 2000 .

[19]  Constantinos Mavroidis,et al.  Mechanical design of a shape memory alloy actuated prosthetic hand. , 2002, Technology and health care : official journal of the European Society for Engineering and Medicine.

[20]  Shinichi Hirai,et al.  Crawling and jumping of deformable soft robot , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[21]  Steven Dubowsky,et al.  Experimental Validation of Physics-Based Planning and Control Algorithms for Planetary Robotic Rovers , 1999, ISER.

[22]  Eiichi Yoshida,et al.  Get back in shape! [SMA self-reconfigurable microrobots] , 2002, IEEE Robotics Autom. Mag..

[23]  Byungkyu Kim,et al.  Design and fabrication of a locomotive mechanism for capsule-type endoscopes using shape memory alloys (SMAs) , 2005, IEEE/ASME Transactions on Mechatronics.

[24]  Georges Dumont,et al.  A Dynamical Training and Design Simulator for Active Catheters , 2004 .

[25]  Peter J. Bentley,et al.  Evolving Motion of Robots with Muscles , 2003, EvoWorkshops.

[26]  Dominiek Reynaerts,et al.  An implantable drug-delivery system based on shape memory alloy micro-actuation , 1997 .

[27]  M. L. Aguiar,et al.  Study of the different types of actuators and mechanisms for upper limb prostheses. , 2003, Artificial organs.

[28]  P. Dario,et al.  Shape memory alloy clamping devices of a capsule for monitoring tasks in the gastrointestinal tract , 2005 .

[29]  N. Shinjo,et al.  Use of a shape memory alloy for the design of an oscillatory propulsion system , 2004, IEEE Journal of Oceanic Engineering.

[30]  Philippe Bidaud,et al.  An Active Tubular Polyarticulated Micro-System for Flexible Endoscope , 2000, ISER.

[31]  Masayoshi Esashi,et al.  An Active Guide Wire With Shape Memory Alloy Bending Actuator Fabricated By Room Temperature Process , 2002 .

[32]  P. Korondi,et al.  A generalised neural network for a humanoid hand , 2000, ISIE'2000. Proceedings of the 2000 IEEE International Symposium on Industrial Electronics (Cat. No.00TH8543).

[33]  Steven Dubowsky,et al.  Design of a Lightweight Hyper-Redundant Deployable Binary Manipulator , 2004 .

[34]  Arianna Menciassi,et al.  A SMA-actuated miniature pressure regulator for a miniature robot for colonoscopy , 2003 .

[35]  Masayoshi Esashi,et al.  Medical and welfare applications of shape memory alloy microcoil actuators , 2005 .

[36]  S. Dubowsky NASA Institute for Advanced Concepts Phase I Study of Self-Transforming Robotic Planetary Explorers Final Report Reporting Period : 11 / 985 / 99 , 2022 .

[37]  Etienne Burdet,et al.  Monolithic shape memory alloy microgripper for 3D assembly of tissue engineering scaffolds , 2001, Optics East.

[38]  F. Cepolina,et al.  Miniature gripping device , 2004 .

[39]  Eiichi Yoshida,et al.  Miniaturized self-reconfigurable system using shape memory alloy , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[40]  Dominiek Reynaerts,et al.  A retrospective evaluation of SMA micro-actuation , 2002 .

[41]  O. Rediniotis,et al.  Modeling and Experiments of the Hysteretic Response of an Active Hydrofoil Actuated by SMA Line Actuators , 1999 .

[42]  M. Sreekumar,et al.  Design of SMA actuated light weight parallel manipulator with intelligent controller , 2006 .

[43]  Oscar Retterer World Conference on Educational Multimedia and Hypermedia , 1995, LINK.

[44]  Reg Dunlop,et al.  A Nitinol Wire Actuated Stewart Platform , 2002 .

[45]  Dominiek Reynaerts,et al.  Shape memory micro-actuation for a gastro-intestinal intervention system , 1999 .

[46]  Philippe Bidaud,et al.  Surgery grippers for Minimally Invasive Heart Surgery , 2004 .

[47]  Eiichi Yoshida,et al.  A Hardware Prototype Self-Reconfigurable Modular Microrobot that Uses Shape Memory Alloy , 2002 .

[48]  I. Shimoyama,et al.  A three-dimensional shape memory alloy microelectrode with clipping structure for insect neural recording , 2000, Journal of Microelectromechanical Systems.

[49]  E. Papadopoulos,et al.  On the Design of an Autonomous Robot Fish , 2003 .

[50]  S. Büttgenbach,et al.  Shape memory microactuators , 2001 .

[51]  Steven Dubowsky,et al.  Computational issues in the planning and kinematics of binary robots , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[52]  Yoichi Haga,et al.  Batch fabricated flat meandering shape memory alloy actuator for active catheter , 2001 .

[53]  Shuichi Miyazaki,et al.  SMA microgripper with integrated antagonism , 2000 .

[54]  Abderrahmane Kheddar,et al.  Tactile interfaces: a state-of-the-art survey , 2004 .

[55]  Yong Qing Fu,et al.  TiNi-based thin films in MEMS applications: a review , 2004 .

[56]  Steven Dubowsky,et al.  Optimized binary modular reconfigurable robotic devices , 2003 .

[57]  Dimitris C. Lagoudas,et al.  Development of a Shape-Memory-Alloy Actuated Biomimetic Hydrofoil , 2002 .

[58]  Rachel Z. Pytel,et al.  Artificial muscle technology: physical principles and naval prospects , 2004, IEEE Journal of Oceanic Engineering.

[59]  Steven Dubowsky,et al.  Lightweight hyper-redundant binary elements for planetary exploration robots , 2001, 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Proceedings (Cat. No.01TH8556).

[60]  Dominiek Reynaerts,et al.  A miniature manipulator for integration in a self-propelling endoscope , 2000 .

[61]  Manfred Kohl,et al.  SMA microgripper system , 2002 .

[62]  C. Mavroidis,et al.  DEVELOPMENT OF A SHAPE MEMORY ALLOY ACTUATED ROBOTIC HAND , 2000 .

[63]  T. Naganuma,et al.  A new, automatic hydrothermal fluid sampler using a shape-memory alloy , 1998 .

[64]  Sheng Jin,et al.  The Micro Trolley Based on SMA and its Control System , 2004, J. Intell. Robotic Syst..

[65]  Mark Yim,et al.  Telecubes: mechanical design of a module for self-reconfigurable robotics , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[66]  Shuji Hashimoto,et al.  Hand-Shaped Force Interface for Human-Cooperative Mobile Robot , 2000, Haptic Human-Computer Interaction.

[67]  Takashi Maeno,et al.  Development of a Miniature Robot Finger with a Variable Stiffness Mechanism using Shape Memory Alloy , 2004 .

[68]  Pradeep K. Khosla,et al.  Solutions for 3D self-reconfiguration in a modular robotic system: implementation and motion planning , 2000, SPIE Optics East.