A superconvergent hybridisable discontinuous Galerkin method for linear elasticity

This is the peer reviewed version of the following article: Sevilla, R., Giacomini, M., Karkoulias, A., Huerta, A. A superconvergent hybridisable discontinuous Galerkin method for linear elasticity. "International journal for numerical methods in engineering", 12 Octubre 2018, vol. 116, num. 2, p. 91-116, which has been published in final form at https://doi.org/10.1002/nme.5916. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

[1]  The stability of stars of simplicial hybrid equilibrium finite elements for solid mechanics , 2016 .

[2]  Bernardo Cockburn,et al.  Analysis of an HDG method for linear elasticity , 2015 .

[3]  Antonio Huerta,et al.  Hybridizable Discontinuous Galerkin with degree adaptivity for the incompressible Navier-Stokes equations ✩ , 2014 .

[4]  J. Schöberl,et al.  TANGENTIAL-DISPLACEMENT AND NORMAL–NORMAL-STRESS CONTINUOUS MIXED FINITE ELEMENTS FOR ELASTICITY , 2011 .

[5]  R. Stenberg On the construction of optimal mixed finite element methods for the linear elasticity problem , 1986 .

[6]  E. Stein,et al.  Mechanical conditions for stability and optimal convergence of mixed finite elements for linear plane elasticity , 1990 .

[7]  Bernardo Cockburn,et al.  A hybridizable discontinuous Galerkin method for linear elasticity , 2009 .

[8]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[9]  Katja Bachmeier,et al.  Finite Elements Theory Fast Solvers And Applications In Solid Mechanics , 2017 .

[10]  J. Douglas,et al.  PEERS: A new mixed finite element for plane elasticity , 1984 .

[11]  M. Fortin,et al.  Reduced symmetry elements in linear elasticity , 2008 .

[12]  Antonio Huerta,et al.  HDG-NEFEM with Degree Adaptivity for Stokes Flows , 2018, Journal of Scientific Computing.

[13]  Bernardo Cockburn,et al.  An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection-diffusion equations , 2009, J. Comput. Phys..

[14]  A. Ern,et al.  A Hybrid High-Order method for the incompressible Navier-Stokes equations based on Temam's device , 2018, J. Comput. Phys..

[15]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[16]  Douglas N. Arnold,et al.  Mixed finite elements for elasticity , 2002, Numerische Mathematik.

[17]  Bernardo Cockburn,et al.  journal homepage: www.elsevier.com/locate/cma , 2022 .

[18]  Antonio Huerta,et al.  Tutorial on Hybridizable Discontinuous Galerkin (HDG) for second-order elliptic problems , 2016 .

[19]  Bernardo Cockburn,et al.  Superconvergent HDG methods for linear elasticity with weakly symmetric stresses , 2013 .

[20]  D. Arnold,et al.  Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates , 1985 .

[21]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[22]  Haiying Wang,et al.  Superconvergent discontinuous Galerkin methods for second-order elliptic problems , 2009, Math. Comput..

[23]  Bernardo Cockburn,et al.  Devising superconvergent HDG methods with symmetric approximate stresses for linear elasticity by $M$-decompositions , 2017, 1704.04512.

[24]  M. Fortin,et al.  Dual hybrid methods for the elasticity and the Stokes problems: a unified approach , 1997 .

[25]  Bo Dong,et al.  A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems , 2008, Math. Comput..

[26]  Jun-Jue Hu,et al.  LOWER ORDER RECTANGULAR NONCONFORMING MIXED FINITE ELEMENT FOR THE THREE-DIMENSIONAL ELASTICITY PROBLEM , 2009 .

[27]  Francisco-Javier Sayas,et al.  Analysis of HDG methods for Stokes flow , 2010, Math. Comput..

[28]  S. Nicaise,et al.  A locking-free discontinuous Galerkin method for linear elasticity in locally nearly incompressible heterogeneous media , 2013 .

[29]  D. Arnold,et al.  NONCONFORMING MIXED ELEMENTS FOR ELASTICITY , 2003 .

[30]  Alexandre Ern,et al.  Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods , 2016 .

[31]  Numedsche,et al.  A Family of Mixed Finite Elements for the Elasticity Problem , 2022 .

[32]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[33]  Ke Shi,et al.  An HDG method for linear elasticity with strong symmetric stresses , 2013, Math. Comput..

[34]  Brigitte Maier,et al.  Mixed And Hybrid Finite Element Methods Springer Series In Computational Mathematics , 2016 .

[35]  P. G. Ciarlet,et al.  Three-dimensional elasticity , 1988 .

[36]  Douglas N. Arnold,et al.  Finite elements for symmetric tensors in three dimensions , 2008, Math. Comput..

[37]  T. Belytschko,et al.  A First Course in Finite Elements: Belytschko/A First Course in Finite Elements , 2007 .

[38]  E. Reissner On a Variational Theorem in Elasticity , 1950 .

[39]  Jay Gopalakrishnan,et al.  Symmetric Nonconforming Mixed Finite Elements for Linear Elasticity , 2011, SIAM J. Numer. Anal..

[40]  Bernardo Cockburn,et al.  A Mixed Finite Element Method for Elasticity in Three Dimensions , 2005, J. Sci. Comput..

[41]  S. C. Brenner,et al.  Linear finite element methods for planar linear elasticity , 1992 .

[42]  M. E. Morley A family of mixed finite elements for linear elasticity , 1989 .

[43]  T. Belytschko,et al.  A first course in finite elements , 2007 .

[44]  Nicole Propst,et al.  Mathematical Foundations Of Elasticity , 2016 .

[45]  P. Hansbo,et al.  Discontinuous Galerkin and the Crouzeix–Raviart element : application to elasticity , 2003 .

[46]  J. P. Moitinho de Almeida,et al.  A SET OF HYBRID EQUILIBRIUM FINITE ELEMENT MODELS FOR THE ANALYSIS OF THREE-DIMENSIONAL SOLIDS , 1996 .

[47]  Bernardo Cockburn,et al.  Discontinuous Galerkin methods for incompressible elastic materials , 2006 .

[48]  Francisco-Javier Sayas,et al.  A PROJECTION-BASED ERROR ANALYSIS OF HDG METHODS , 2010 .

[49]  Thomas P. Wihler,et al.  Locking-free DGFEM for elasticity problems in polygons , 2002 .

[50]  P. Gould Introduction to Linear Elasticity , 1983 .

[51]  D. Arnold Mixed finite element methods for elliptic problems , 1990 .

[52]  Bernardo Cockburn,et al.  An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations , 2009, Journal of Computational Physics.

[53]  Bernardo Cockburn,et al.  An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations , 2011, J. Comput. Phys..

[54]  P. Hansbo,et al.  CHALMERS FINITE ELEMENT CENTER Preprint 2000-06 Discontinuous Galerkin Methods for Incompressible and Nearly Incompressible Elasticity by Nitsche ’ s Method , 2007 .

[55]  J. Thomas,et al.  Equilibrium finite elements for the linear elastic problem , 1979 .

[56]  D. Arnold,et al.  NONCONFORMING TETRAHEDRAL MIXED FINITE ELEMENTS FOR ELASTICITY , 2012, 1210.6256.

[57]  Bernardo Cockburn,et al.  A new elasticity element made for enforcing weak stress symmetry , 2010, Math. Comput..

[58]  Bernardo Cockburn,et al.  A Comparison of HDG Methods for Stokes Flow , 2010, J. Sci. Comput..

[59]  Antonio Huerta,et al.  Discontinuous Galerkin methods for the Stokes equations using divergence‐free approximations , 2008 .

[60]  D. Arnold,et al.  A new mixed formulation for elasticity , 1988 .

[61]  Weifeng Qiu,et al.  A locking-free $$hp$$ DPG method for linear elasticity with symmetric stresses , 2012, Numerische Mathematik.

[62]  J. P. Moitinho de Almeida,et al.  Alternative approach to the formulation of hybrid equilibrium finite elements , 1991 .

[63]  D. Arnold,et al.  Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.

[64]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[65]  J. Tinsley Oden,et al.  Reliability in computational mechanics , 1990 .

[66]  Antonio Huerta,et al.  A Superconvergent HDG Method for Stokes Flow with Strongly Enforced Symmetry of the Stress Tensor , 2018, Journal of Scientific Computing.

[67]  Thomas P. Wihler Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems , 2006, Math. Comput..