暂无分享,去创建一个
Antonio Huerta | Ruben Sevilla | Matteo Giacomini | Alexandros Karkoulias | M. Giacomini | A. Huerta | R. Sevilla | Alexandros Karkoulias
[1] The stability of stars of simplicial hybrid equilibrium finite elements for solid mechanics , 2016 .
[2] Bernardo Cockburn,et al. Analysis of an HDG method for linear elasticity , 2015 .
[3] Antonio Huerta,et al. Hybridizable Discontinuous Galerkin with degree adaptivity for the incompressible Navier-Stokes equations ✩ , 2014 .
[4] J. Schöberl,et al. TANGENTIAL-DISPLACEMENT AND NORMAL–NORMAL-STRESS CONTINUOUS MIXED FINITE ELEMENTS FOR ELASTICITY , 2011 .
[5] R. Stenberg. On the construction of optimal mixed finite element methods for the linear elasticity problem , 1986 .
[6] E. Stein,et al. Mechanical conditions for stability and optimal convergence of mixed finite elements for linear plane elasticity , 1990 .
[7] Bernardo Cockburn,et al. A hybridizable discontinuous Galerkin method for linear elasticity , 2009 .
[8] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[9] Katja Bachmeier,et al. Finite Elements Theory Fast Solvers And Applications In Solid Mechanics , 2017 .
[10] J. Douglas,et al. PEERS: A new mixed finite element for plane elasticity , 1984 .
[11] M. Fortin,et al. Reduced symmetry elements in linear elasticity , 2008 .
[12] Antonio Huerta,et al. HDG-NEFEM with Degree Adaptivity for Stokes Flows , 2018, Journal of Scientific Computing.
[13] Bernardo Cockburn,et al. An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection-diffusion equations , 2009, J. Comput. Phys..
[14] A. Ern,et al. A Hybrid High-Order method for the incompressible Navier-Stokes equations based on Temam's device , 2018, J. Comput. Phys..
[15] Raytcho D. Lazarov,et al. Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..
[16] Douglas N. Arnold,et al. Mixed finite elements for elasticity , 2002, Numerische Mathematik.
[17] Bernardo Cockburn,et al. journal homepage: www.elsevier.com/locate/cma , 2022 .
[18] Antonio Huerta,et al. Tutorial on Hybridizable Discontinuous Galerkin (HDG) for second-order elliptic problems , 2016 .
[19] Bernardo Cockburn,et al. Superconvergent HDG methods for linear elasticity with weakly symmetric stresses , 2013 .
[20] D. Arnold,et al. Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates , 1985 .
[21] Jean E. Roberts,et al. Mixed and hybrid finite element methods , 1987 .
[22] Haiying Wang,et al. Superconvergent discontinuous Galerkin methods for second-order elliptic problems , 2009, Math. Comput..
[23] Bernardo Cockburn,et al. Devising superconvergent HDG methods with symmetric approximate stresses for linear elasticity by $M$-decompositions , 2017, 1704.04512.
[24] M. Fortin,et al. Dual hybrid methods for the elasticity and the Stokes problems: a unified approach , 1997 .
[25] Bo Dong,et al. A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems , 2008, Math. Comput..
[26] Jun-Jue Hu,et al. LOWER ORDER RECTANGULAR NONCONFORMING MIXED FINITE ELEMENT FOR THE THREE-DIMENSIONAL ELASTICITY PROBLEM , 2009 .
[27] Francisco-Javier Sayas,et al. Analysis of HDG methods for Stokes flow , 2010, Math. Comput..
[28] S. Nicaise,et al. A locking-free discontinuous Galerkin method for linear elasticity in locally nearly incompressible heterogeneous media , 2013 .
[29] D. Arnold,et al. NONCONFORMING MIXED ELEMENTS FOR ELASTICITY , 2003 .
[30] Alexandre Ern,et al. Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods , 2016 .
[31] Numedsche,et al. A Family of Mixed Finite Elements for the Elasticity Problem , 2022 .
[32] P. Raviart,et al. Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .
[33] Ke Shi,et al. An HDG method for linear elasticity with strong symmetric stresses , 2013, Math. Comput..
[34] Brigitte Maier,et al. Mixed And Hybrid Finite Element Methods Springer Series In Computational Mathematics , 2016 .
[35] P. G. Ciarlet,et al. Three-dimensional elasticity , 1988 .
[36] Douglas N. Arnold,et al. Finite elements for symmetric tensors in three dimensions , 2008, Math. Comput..
[37] T. Belytschko,et al. A First Course in Finite Elements: Belytschko/A First Course in Finite Elements , 2007 .
[38] E. Reissner. On a Variational Theorem in Elasticity , 1950 .
[39] Jay Gopalakrishnan,et al. Symmetric Nonconforming Mixed Finite Elements for Linear Elasticity , 2011, SIAM J. Numer. Anal..
[40] Bernardo Cockburn,et al. A Mixed Finite Element Method for Elasticity in Three Dimensions , 2005, J. Sci. Comput..
[41] S. C. Brenner,et al. Linear finite element methods for planar linear elasticity , 1992 .
[42] M. E. Morley. A family of mixed finite elements for linear elasticity , 1989 .
[43] T. Belytschko,et al. A first course in finite elements , 2007 .
[44] Nicole Propst,et al. Mathematical Foundations Of Elasticity , 2016 .
[45] P. Hansbo,et al. Discontinuous Galerkin and the Crouzeix–Raviart element : application to elasticity , 2003 .
[46] J. P. Moitinho de Almeida,et al. A SET OF HYBRID EQUILIBRIUM FINITE ELEMENT MODELS FOR THE ANALYSIS OF THREE-DIMENSIONAL SOLIDS , 1996 .
[47] Bernardo Cockburn,et al. Discontinuous Galerkin methods for incompressible elastic materials , 2006 .
[48] Francisco-Javier Sayas,et al. A PROJECTION-BASED ERROR ANALYSIS OF HDG METHODS , 2010 .
[49] Thomas P. Wihler,et al. Locking-free DGFEM for elasticity problems in polygons , 2002 .
[50] P. Gould. Introduction to Linear Elasticity , 1983 .
[51] D. Arnold. Mixed finite element methods for elliptic problems , 1990 .
[52] Bernardo Cockburn,et al. An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations , 2009, Journal of Computational Physics.
[53] Bernardo Cockburn,et al. An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations , 2011, J. Comput. Phys..
[54] P. Hansbo,et al. CHALMERS FINITE ELEMENT CENTER Preprint 2000-06 Discontinuous Galerkin Methods for Incompressible and Nearly Incompressible Elasticity by Nitsche ’ s Method , 2007 .
[55] J. Thomas,et al. Equilibrium finite elements for the linear elastic problem , 1979 .
[56] D. Arnold,et al. NONCONFORMING TETRAHEDRAL MIXED FINITE ELEMENTS FOR ELASTICITY , 2012, 1210.6256.
[57] Bernardo Cockburn,et al. A new elasticity element made for enforcing weak stress symmetry , 2010, Math. Comput..
[58] Bernardo Cockburn,et al. A Comparison of HDG Methods for Stokes Flow , 2010, J. Sci. Comput..
[59] Antonio Huerta,et al. Discontinuous Galerkin methods for the Stokes equations using divergence‐free approximations , 2008 .
[60] D. Arnold,et al. A new mixed formulation for elasticity , 1988 .
[61] Weifeng Qiu,et al. A locking-free $$hp$$ DPG method for linear elasticity with symmetric stresses , 2012, Numerische Mathematik.
[62] J. P. Moitinho de Almeida,et al. Alternative approach to the formulation of hybrid equilibrium finite elements , 1991 .
[63] D. Arnold,et al. Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.
[64] F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .
[65] J. Tinsley Oden,et al. Reliability in computational mechanics , 1990 .
[66] Antonio Huerta,et al. A Superconvergent HDG Method for Stokes Flow with Strongly Enforced Symmetry of the Stress Tensor , 2018, Journal of Scientific Computing.
[67] Thomas P. Wihler. Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems , 2006, Math. Comput..