Performance of Solid Oxide Iron-Air Battery Operated at 550°C

[1]  Yunhui Gong,et al.  A high energy density all solid-state tungsten-air battery. , 2013, Chemical communications.

[2]  Yunhui Gong,et al.  Long Term Stability Study of a Solid Oxide Metal-Air Battery , 2013 .

[3]  Yunhui Gong,et al.  Solid Oxide Iron-Air Rechargeable Battery - A New Energy Storage Mechanism , 2013 .

[4]  T. Ishihara,et al.  Ni–Fe–Ce(Mn,Fe)O2 cermet anode for rechargeable Fe–Air battery using LaGaO3 oxide ion conductor as electrolyte , 2013 .

[5]  Yunhui Gong,et al.  Energy Storage Characteristics of a New Rechargeable Solid Energy Storage Characteristics of a New Rechargeable Solid Oxide Iron-Air Battery Oxide Iron-Air Battery , 2014 .

[6]  Jonathon R. Harding,et al.  In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions , 2012, Scientific Reports.

[7]  T. Ishihara,et al.  High capacity of an Fe-air rechargeable battery using LaGaO3-based oxide ion conductor as an electrolyte. , 2012, Physical chemistry chemical physics : PCCP.

[8]  S. Narayanan,et al.  Materials challenges and technical approaches for realizing inexpensive and robust iron–air batteries for large-scale energy storage , 2012 .

[9]  S. Barnett,et al.  A solid oxide cell yielding high power density below 600 °C , 2012 .

[10]  Nansheng Xu,et al.  Beneficial effects of Mg-excess in La1-xSrxGa1-yMgy + zO3-δ as solid electrolyte , 2012 .

[11]  Yuyan Shao,et al.  Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges, and Perspective , 2012 .

[12]  J. Nørskov,et al.  Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li-O2 Batteries. , 2012, The journal of physical chemistry letters.

[13]  Kai Xie,et al.  Investigation of oxygen reduction chemistry in ether and carbonate based electrolytes for Li–O2 batteries , 2012 .

[14]  Kevin Huang,et al.  Performance of a commercial cathode-supported solid oxide fuel cells prepared by single-step infiltration of an ion-conducting electrocatalyst , 2012 .

[15]  Ulrich Kunz,et al.  Zinc-air Batteries: Prospects and Challenges for Future Improvement , 2012 .

[16]  John B. Goodenough,et al.  A novel solid oxide redox flow battery for grid energy storage , 2011 .

[17]  Yuhui Chen,et al.  The lithium-oxygen battery with ether-based electrolytes. , 2011, Angewandte Chemie.

[18]  P. Bruce,et al.  Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. , 2011, Journal of the American Chemical Society.

[19]  Linda F. Nazar,et al.  Positive Electrode Materials for Li-Ion and Li-Batteries† , 2010 .

[20]  H. Kaneko,et al.  Cerium ion redox system in CeO2–xFe2O3 solid solution at high temperatures (1,273–1,673 K) in the two-step water-splitting reaction for solar H2 generation , 2008 .

[21]  H. Kaneko,et al.  Reactive ceramics of CeO2–MOx (M=Mn, Fe, Ni, Cu) for H2 generation by two-step water splitting using concentrated solar thermal energy , 2007 .

[22]  J. Fergus Electrolytes for solid oxide fuel cells , 2006 .

[23]  V. Kharton,et al.  Transport properties of solid oxide electrolyte ceramics: a brief review , 2004 .

[24]  Kiyoshi Otsuka,et al.  Chemical storage of hydrogen by modified iron oxides , 2003 .

[25]  S. Pennycook,et al.  Interactions of Hydrogen with CeO2 , 2001 .

[26]  Hailei Zhao,et al.  One-Step Infiltration of Mixed Conducting Electrocatalysts for Reducing Cathode Polarization of a Commercial Cathode-Supported SOFC , 2012 .

[27]  Sun Tai Kim,et al.  Metal–Air Batteries with High Energy Density: Li–Air versus Zn–Air , 2010 .

[28]  K. Foger,et al.  Solid oxide electrolyte fuel cell review , 1996 .