Regulation of TFEB and V-ATPases by mTORC1

[1]  Andrea Ballabio,et al.  TFEB Links Autophagy to Lysosomal Biogenesis , 2011, Science.

[2]  S. Gygi,et al.  Phosphoproteomic Analysis Identifies Grb10 as an mTORC1 Substrate That Negatively Regulates Insulin Signaling , 2011, Science.

[3]  Simon Tavaré,et al.  Spatial Coupling of mTOR and Autophagy Augments Secretory Phenotypes , 2011, Science.

[4]  E. Baehrecke,et al.  Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation , 2011, Proceedings of the National Academy of Sciences.

[5]  J. Brugarolas,et al.  Cell-Type-Dependent Regulation of mTORC1 by REDD1 and the Tumor Suppressors TSC1/TSC2 and LKB1 in Response to Hypoxia , 2011, Molecular and Cellular Biology.

[6]  Cahir J. O'Kane,et al.  Lysosomal positioning coordinates cellular nutrient responses , 2011, Nature Cell Biology.

[7]  J. Brugarolas,et al.  Uncoupling hypoxia signaling from oxygen sensing in the liver results in hypoketotic hypoglycemic death , 2011, Oncogene.

[8]  Guido Kroemer,et al.  Autophagy and the integrated stress response. , 2010, Molecular cell.

[9]  Qicheng Ma,et al.  Activation of a metabolic gene regulatory network downstream of mTOR complex 1. , 2010, Molecular cell.

[10]  D. Hailey,et al.  Autophagy termination and lysosome reformation regulated by mTOR , 2010, Nature.

[11]  T. P. Neufeld,et al.  Regulation of mTORC1 by the Rab and Arf GTPases* , 2010, The Journal of Biological Chemistry.

[12]  D. Sabatini,et al.  Ragulator-Rag Complex Targets mTORC1 to the Lysosomal Surface and Is Necessary for Its Activation by Amino Acids , 2010, Cell.

[13]  N. Grishin,et al.  Structural analysis and functional implications of the negative mTORC1 regulator REDD1. , 2010, Biochemistry.

[14]  J. Backer,et al.  The Late Endosome is Essential for mTORC1 Signaling , 2010, Molecular biology of the cell.

[15]  N. Grishin,et al.  Structural Analysis and Functional Implications of the Negative mTORC 1 Regulator REDD 1 † , ‡ , 2010 .

[16]  D. Klionsky,et al.  Regulation mechanisms and signaling pathways of autophagy. , 2009, Annual review of genetics.

[17]  Jimmy K. Eng,et al.  Quantitative Phosphoproteomic Analysis of T Cell Receptor Signaling Reveals System-Wide Modulation of Protein-Protein Interactions , 2009, Science Signaling.

[18]  C. Pan,et al.  Cathepsin-K immunoreactivity distinguishes MiTF/TFE family renal translocation carcinomas from other renal carcinomas , 2009, Modern Pathology.

[19]  Valerio Embrione,et al.  A Gene Network Regulating Lysosomal Biogenesis and Function , 2009, Science.

[20]  B. Delahunt,et al.  Uncommon and recently described renal carcinomas , 2009, Modern Pathology.

[21]  D. Sleat,et al.  Proteomics of the lysosome. , 2009, Biochimica et biophysica acta.

[22]  J. Avruch,et al.  Amino acid regulation of TOR complex 1. , 2009, American journal of physiology. Endocrinology and metabolism.

[23]  Wei Li,et al.  Integrative analysis of HIF binding and transactivation reveals its role in maintaining histone methylation homeostasis , 2009, Proceedings of the National Academy of Sciences.

[24]  A. Hinnebusch,et al.  Regulation of Translation Initiation in Eukaryotes: Mechanisms and Biological Targets , 2009, Cell.

[25]  W. Kaelin The von Hippel–Lindau tumour suppressor protein: O2 sensing and cancer , 2008, Nature Reviews Cancer.

[26]  Claudio R. Santos,et al.  SREBP Activity Is Regulated by mTORC1 and Contributes to Akt-Dependent Cell Growth , 2008, Cell metabolism.

[27]  R. Motzer,et al.  Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial , 2008, The Lancet.

[28]  S. Elledge,et al.  A quantitative atlas of mitotic phosphorylation , 2008, Proceedings of the National Academy of Sciences.

[29]  D. Corey,et al.  Antisense transcripts are targets for activating small RNAs , 2008, Nature Structural &Molecular Biology.

[30]  T. P. Neufeld,et al.  Regulation of TORC1 by Rag GTPases in nutrient response , 2008, Nature Cell Biology.

[31]  David M. Sabatini,et al.  The Rag GTPases Bind Raptor and Mediate Amino Acid Signaling to mTORC1 , 2008, Science.

[32]  M. Futai,et al.  The V-type H+-ATPase in vesicular trafficking: targeting, regulation and function , 2008, Current Opinion in Cell Biology.

[33]  Yang Xie,et al.  Enhanced identification and biological validation of differential gene expression via Illumina whole-genome expression arrays through the use of the model-based background correction methodology , 2008, Nucleic acids research.

[34]  B. Turk,et al.  AMPK phosphorylation of raptor mediates a metabolic checkpoint. , 2008, Molecular cell.

[35]  D. Sgroi,et al.  Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. , 2008, Genes & development.

[36]  R. Abraham,et al.  Mammalian target of rapamycin as a therapeutic target in oncology. , 2008, Expert opinion on therapeutic targets.

[37]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[38]  G. Zamboni,et al.  PEComas: the past, the present and the future , 2007, Virchows Archiv.

[39]  R. Roberts Faculty Opinions recommendation of mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. , 2007 .

[40]  V. Mootha,et al.  mTOR controls mitochondrial oxidative function through a YY1–PGC-1α transcriptional complex , 2007, Nature.

[41]  Michael Forgac,et al.  Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology , 2007, Nature Reviews Molecular Cell Biology.

[42]  A. Folpe,et al.  Activation of the mTOR pathway in sporadic angiomyolipomas and other perivascular epithelioid cell neoplasms. , 2007, Human pathology.

[43]  Satyajit Mayor,et al.  Pathways of clathrin-independent endocytosis , 2007, Nature Reviews Molecular Cell Biology.

[44]  David McDermott,et al.  Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. , 2007, The New England journal of medicine.

[45]  S. Carr,et al.  PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. , 2007, Molecular cell.

[46]  P. Campochiaro,et al.  VMD2 Promoter Requires Two Proximal E-box Sites for Its Activity in Vivo and Is Regulated by the MITF-TFE Family* , 2007, Journal of Biological Chemistry.

[47]  Lawrence B. Gardner,et al.  Hypoxic Regulation of Id-1 and Activation of the Unfolded Protein Response Are Aberrant in Neuroblastoma* , 2007, Journal of Biological Chemistry.

[48]  T. P. Neufeld,et al.  TOR coordinates bulk and targeted endocytosis in the Drosophila melanogaster fat body to regulate cell growth , 2006, The Journal of cell biology.

[49]  Robert J. Schneider,et al.  Hypoxia Inhibits Protein Synthesis through a 4E-BP1 and Elongation Factor 2 Kinase Pathway Controlled by mTOR and Uncoupled in Breast Cancer Cells , 2006, Molecular and Cellular Biology.

[50]  Russell G. Jones,et al.  Hypoxia-induced energy stress regulates mRNA translation and cell growth. , 2006, Molecular cell.

[51]  K. Beyenbach,et al.  The V-type H+ ATPase: molecular structure and function, physiological roles and regulation , 2006, Journal of Experimental Biology.

[52]  M. Hall,et al.  TOR Signaling in Growth and Metabolism , 2006, Cell.

[53]  J. Bos,et al.  Regulation of the small GTPase Rheb by amino acids , 2006, Oncogene.

[54]  F. Kaper,et al.  Mutations in the PI3K/PTEN/TSC2 pathway contribute to mammalian target of rapamycin activity and increased translation under hypoxic conditions. , 2006, Cancer research.

[55]  Howard J. Edenberg,et al.  Effects of filtering by Present call on analysis of microarray experiments , 2006, BMC Bioinformatics.

[56]  G. Camenisch,et al.  Integration of Oxygen Signaling at the Consensus HRE , 2005, Science's STKE.

[57]  Bianca Habermann,et al.  Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis , 2005, Nature.

[58]  C. Proud,et al.  The Tuberous Sclerosis Protein TSC2 Is Not Required for the Regulation of the Mammalian Target of Rapamycin by Amino Acids and Certain Cellular Stresses* , 2005, Journal of Biological Chemistry.

[59]  Paul Tempst,et al.  Phosphorylation and Functional Inactivation of TSC2 by Erk Implications for Tuberous Sclerosisand Cancer Pathogenesis , 2005, Cell.

[60]  G. Mills,et al.  Mammalian target of rapamycin. , 2004, Seminars in oncology.

[61]  E. Hafen,et al.  Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. , 2004, Genes & development.

[62]  N. Copeland,et al.  Melanocytes and the microphthalmia transcription factor network. , 2004, Annual review of genetics.

[63]  R. Loewith,et al.  Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive , 2004, Nature Cell Biology.

[64]  Steven P Gygi,et al.  Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[65]  D. Guertin,et al.  Rictor, a Novel Binding Partner of mTOR, Defines a Rapamycin-Insensitive and Raptor-Independent Pathway that Regulates the Cytoskeleton , 2004, Current Biology.

[66]  R. DePinho,et al.  The LKB1 tumor suppressor negatively regulates mTOR signaling. , 2004, Cancer cell.

[67]  R. DePinho,et al.  Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. , 2004, Genes & development.

[68]  T. Golub,et al.  mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways , 2004, Nature Medicine.

[69]  J. Blenis,et al.  Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression , 2004, Oncogene.

[70]  N. Oshiro,et al.  Raptor, a binding partner of target of rapamycin. , 2004, Biochemical and biophysical research communications.

[71]  K. Inoki,et al.  TSC2 Mediates Cellular Energy Response to Control Cell Growth and Survival , 2003, Cell.

[72]  Hongbing Zhang,et al.  Loss of Tsc1/Tsc2 activates mTOR and disrupts PI3K-Akt signaling through downregulation of PDGFR. , 2003, The Journal of clinical investigation.

[73]  A. F. Castro,et al.  Rheb Binds Tuberous Sclerosis Complex 2 (TSC2) and Promotes S6 Kinase Activation in a Rapamycin- and Farnesylation-dependent Manner* , 2003, Journal of Biological Chemistry.

[74]  J. Blenis,et al.  Tuberous Sclerosis Complex Gene Products, Tuberin and Hamartin, Control mTOR Signaling by Acting as a GTPase-Activating Protein Complex toward Rheb , 2003, Current Biology.

[75]  K. Inoki,et al.  Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. , 2003, Genes & development.

[76]  William R Sellers,et al.  TSC2 regulates VEGF through mTOR-dependent and -independent pathways. , 2003, Cancer cell.

[77]  E. van den Berg,et al.  Upregulation of the transcription factor TFEB in t(6;11)(p21;q13)-positive renal cell carcinomas due to promoter substitution. , 2003, Human molecular genetics.

[78]  B. Edgar,et al.  Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins , 2003, Nature Cell Biology.

[79]  E. Hafen,et al.  Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. , 2003, Molecular cell.

[80]  M. Ladanyi,et al.  Cloning of an Alpha-TFEB fusion in renal tumors harboring the t(6;11)(p21;q13) chromosome translocation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[81]  Hongbing Zhang,et al.  Mutation in TSC2 and activation of mammalian target of rapamycin signalling pathway in renal angiomyolipoma , 2003, The Lancet.

[82]  Rafael A Irizarry,et al.  Exploration, normalization, and summaries of high density oligonucleotide array probe level data. , 2003, Biostatistics.

[83]  W. Sellers,et al.  TSC 2 regulates VEGF through mTOR-dependent and-independent pathways , 2003 .

[84]  A. Hodges,et al.  Tuberous sclerosis complex tumor suppressor–mediated S6 kinase inhibition by phosphatidylinositide-3-OH kinase is mTOR independent , 2002, The Journal of cell biology.

[85]  S. Nicosia,et al.  Phosphatidylinositol 3-Kinase/Akt Pathway Regulates Tuberous Sclerosis Tumor Suppressor Complex by Phosphorylation of Tuberin* , 2002, The Journal of Biological Chemistry.

[86]  J. Crespo,et al.  Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. , 2002, Molecular cell.

[87]  Tian Xu,et al.  Akt regulates growth by directly phosphorylating Tsc2 , 2002, Nature Cell Biology.

[88]  K. Inoki,et al.  TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling , 2002, Nature Cell Biology.

[89]  J. Avruch,et al.  Raptor, a Binding Partner of Target of Rapamycin (TOR), Mediates TOR Action , 2002, Cell.

[90]  D. Sabatini,et al.  mTOR Interacts with Raptor to Form a Nutrient-Sensitive Complex that Signals to the Cell Growth Machinery , 2002, Cell.

[91]  J. Blenis,et al.  Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. , 2002, Molecular cell.

[92]  Hongbing Zhang,et al.  A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells. , 2002, Human molecular genetics.

[93]  E. J. Bowman,et al.  Mutations in Subunit c of the Vacuolar ATPase Confer Resistance to Bafilomycin and Identify a Conserved Antibiotic Binding Site* , 2002, The Journal of Biological Chemistry.

[94]  G. Christ,et al.  Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. , 2001, The Journal of biological chemistry.

[95]  V. Lehto,et al.  Binding of GGA2 to the Lysosomal Enzyme Sorting Motif of the Mannose 6-Phosphate Receptor , 2001, Science.

[96]  E. Golemis,et al.  The Tuberous Sclerosis 2 Gene Product, Tuberin, Functions as a Rab5 GTPase Activating Protein (GAP) in Modulating Endocytosis* , 1997, The Journal of Biological Chemistry.

[97]  James Brugarolas,et al.  Radiation-induced cell cycle arrest compromised by p21 deficiency , 1995, Nature.

[98]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[99]  M. Fukuda,et al.  Lysosomal membrane glycoproteins. Structure, biosynthesis, and intracellular trafficking. , 1991, The Journal of biological chemistry.

[100]  A. Guyton,et al.  Textbook of Medical Physiology , 1961 .