Si nanocrystals and nanocrystal interfaces studied by positron annihilation

Si nanocrystals embedded in a SiO2 matrix were studied with positron annihilation and photoluminescence spectroscopies. Analysis of the S- and W-parameters for the sample annealed at 800 °C reveals a positron trap at the interface between the amorphous nanodots and the surrounding matrix. Another trap state is observed in the 1150 °C heat treated samples where nanodots are in a crystalline form. Positrons are most likely trapped to defects related to dangling bonds at the surface of the nanocrystals. Passivation of the samples results on one hand in the decrease of the S-parameter implying a decrease in the open volume of the interface state and, on the other hand, in the strengthening of the positron annihilation signal from the interface. The intensity of the photoluminescence signal increases with the formation of the nanocrystals. Passivation of samples strengthens the photoluminescence signal, further indicating a successful deactivation of luminescence quenching at the nanocrystal surface. Strengthe...

[1]  V. Afanas’ev,et al.  Impact of strain on the passivation efficiency of Ge dangling bond interface defects in condensation grown SiO2/GexSi1-x/SiO2/(100) Si structures with nm-thin GexSi1-x layers , 2014 .

[2]  K. Lynn,et al.  Implantation profile of low-energy positrons in solids , 1990 .

[3]  B. Garrido,et al.  Formation of size-controlled silicon nanocrystals in plasma enhanced chemical vapor deposition grown SiOxNy/SiO2 superlattices , 2011 .

[4]  G. Ozin,et al.  Multicolor silicon light-emitting diodes (SiLEDs). , 2013, Nano letters.

[5]  A. Stesmans,et al.  Charge transition level of GePb1 centers at interfaces of SiO2/GexSi1−x/SiO2 heterostructures investigated by positron annihilation spectroscopy , 2014 .

[6]  Filip Tuomisto,et al.  Defect identification in semiconductors with positron annihilation: Experiment and theory , 2013 .

[7]  P. Lai,et al.  Sized controlled synthesis, purification, and cell studies with silicon quantum dots. , 2011, Nanoscale.

[8]  A. C. Kruseman,et al.  Oxygen implanted silicon investigated by positron annihilation spectroscopy , 1999 .

[9]  Paramagnetic point defects at SiO2/nanocrystalline Si interfaces , 2008 .

[10]  D. Pliszka,et al.  Positron annihilation study of vacancy-like defects related to oxygen precipitates in Czochralski-type Si , 2001 .

[11]  P. J. Simpson,et al.  Role of vacancy-type defects in the formation of silicon nanocrystals , 2009 .

[12]  R. Sinelnikov,et al.  Detection of nitroaromatics in the solid, solution, and vapor phases using silicon quantum dot sensors , 2016, Nanotechnology.

[13]  R. Krause-Rehberg,et al.  Positron Annihilation in Semiconductors , 1999 .

[14]  J. Linnros,et al.  Near-Unity Internal Quantum Efficiency of Luminescent Silicon Nanocrystals with Ligand Passivation. , 2015, ACS nano.

[15]  Allan,et al.  Theoretical aspects of the luminescence of porous silicon. , 1993, Physical review. B, Condensed matter.

[16]  Defect engineering of Si nanocrystal interfaces , 2012 .

[17]  Benjamin F. P. McVey,et al.  Solution synthesis, optical properties, and bioimaging applications of silicon nanocrystals. , 2014, Accounts of chemical research.

[18]  A. Stesmans,et al.  Pb(0) centers at the Si-nanocrystal/SiO2 interface as the dominant photoluminescence quenching defect , 2010 .

[19]  Eli Ruckenstein,et al.  Water-Soluble Poly(acrylic acid) Grafted Luminescent Silicon Nanoparticles and Their Use as Fluorescent Biological Staining Labels , 2004 .

[20]  U. Kortshagen,et al.  An all-gas-phase approach for the fabrication of silicon nanocrystal light-emitting devices. , 2012, Nano letters.

[21]  M. Barthe,et al.  Positron annihilation states at interfaces: evidence of divacancies , 1997 .

[22]  Si nanoparticle interfaces in Si/SiO2 solar cell materials , 2011, 1106.1753.

[23]  J. Valenta,et al.  Effects of inter-nanocrystal distance on luminescence quantum yield in ensembles of Si nanocrystals , 2014 .