A dimension reduction technique for two-mode non-convex fuzzy data

Fuzzy modeling and fuzzy statistics provide useful tools for handling empirical situations affected by vagueness and imprecision in the data. Several fuzzy statistical models and methods (e.g., fuzzy regression, fuzzy principal component analysis, fuzzy clustering) have been developed over the years. Generally the standard LR-fuzzy data representation has been used in these methods. However, several empirical contexts, such as human ratings and decision making, may show more complex fuzzy structures which cannot be successfully modeled by the LR representation. In all these cases another type of fuzzy data representation, the so-called LHIR representation, should be preferred instead. In particular, this novel representation allows to handle with fuzzy data which are characterized by non-convex membership functions. In this paper, we address the problem of summarizing large datasets characterized by two-mode non-convex fuzzy data. We introduce a novel dimension reduction technique (NCFCA) based on the framework of Component Analysis and Least squares programming. Finally, to better highlight some important characteristics of the proposed model, we apply NCFCA to three empirical datasets concerning behavioral and socio-economic issues.

[1]  P. Giordani,et al.  Component Models for Fuzzy Data , 2006 .

[2]  Phil Diamond,et al.  Fuzzy least squares , 1988, Inf. Sci..

[3]  Reinhard Viertl,et al.  Statistical Methods for Fuzzy Data: Viertl/Statistical Methods for Fuzzy Data , 2011 .

[4]  Jutta Joormann,et al.  A short form of the Worry Domains Questionnaire: Construction and factorial validation. , 2001 .

[5]  Gisella Facchinetti,et al.  Evaluations of fuzzy quantities , 2006, Fuzzy Sets Syst..

[6]  Miin-Shen Yang,et al.  On a class of fuzzy c-numbers clustering procedures for fuzzy data , 1996, Fuzzy Sets Syst..

[7]  R. Viertl Statistical Methods for Fuzzy Data , 2011 .

[8]  Henk A. L. Kiers,et al.  Alternating least squares algorithms for simultaneous components analysis with equal component weight matrices in two or more populations , 1989 .

[9]  L. Trefethen,et al.  Numerical linear algebra , 1997 .

[10]  Didier Dubois,et al.  Soft Methods for Handling Variability and Imprecision , 2008 .

[11]  S. Taheri,et al.  Trends in Fuzzy Statistics , 2016 .

[12]  A. Irpino,et al.  Visualizing symbolic data by closed shapes. , 2003 .

[13]  Hans-Jürgen Zimmermann,et al.  Fuzzy Set Theory - and Its Applications , 1985 .

[14]  R. Bro,et al.  Centering and scaling in component analysis , 2003 .

[15]  Enrico Ciavolino,et al.  A fuzzy set theory based computational model to represent the quality of inter-rater agreement , 2014 .

[16]  Antonio Calcagnì,et al.  Non-convex fuzzy data and fuzzy statistics: a first descriptive approach to data analysis , 2013, Soft Computing.

[17]  H. Abdi,et al.  Principal component analysis , 2010 .

[18]  Francesco Palumbo,et al.  Principal component analysis of interval data: a symbolic data analysis approach , 2000, Comput. Stat..

[19]  Henk A. L. Kiers,et al.  Setting up alternating least squares and iterative majorization algorithms for solving various matrix optimization problems , 2002, Comput. Stat. Data Anal..

[20]  Roger E. Millsap,et al.  On component analyses , 1985 .

[21]  Addie Johnson,et al.  Action as a Window to Perception: Measuring Attention with Mouse Movements , 2012 .

[22]  Roger E. Millsap,et al.  Component analysis in cross-sectional and longitudinal data , 1988 .

[23]  Michael Hanss,et al.  Applied Fuzzy Arithmetic , 2005 .

[24]  Didier Dubois,et al.  Possibility Theory - An Approach to Computerized Processing of Uncertainty , 1988 .

[25]  H. Kiers,et al.  Bootstrap confidence intervals for three‐way methods , 2004 .

[26]  Paolo Giordani,et al.  Three-way analysis of imprecise data , 2010, J. Multivar. Anal..

[27]  James S Magnuson,et al.  Moving hand reveals dynamics of thought. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[28]  R. A. van den Berg,et al.  Centering, scaling, and transformations: improving the biological information content of metabolomics data , 2006, BMC Genomics.

[29]  Paolo Giordani,et al.  Principal Component Analysis of symmetric fuzzy data , 2004, Comput. Stat. Data Anal..

[30]  Robert Pryor,et al.  An Application of a Computerized Fuzzy Graphic Rating Scale to the Psychological Measurement of Individual Differences , 1988, Int. J. Man Mach. Stud..

[31]  Mohammad Izadikhah,et al.  Extension of the TOPSIS method for decision-making problems with fuzzy data , 2006, Appl. Math. Comput..

[32]  H. Kaiser The varimax criterion for analytic rotation in factor analysis , 1958 .

[33]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[34]  Edwin Diday,et al.  Principal component analysis for interval‐valued observations , 2011, Stat. Anal. Data Min..

[35]  L. Eriksson Multi- and megavariate data analysis , 2006 .

[36]  E. Diday,et al.  Extension de l'analyse en composantes principales à des données de type intervalle , 1997 .

[37]  P. Giordani,et al.  Principal component analysis with boundary constraints , 2007 .

[38]  Robert Ivor John,et al.  A case study to illustrate the use of non-convex membership functions for linguistic terms , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).

[39]  Uwe Reuter,et al.  Application of Non-convex Fuzzy Variables to Fuzzy Structural Analysis , 2008, SMPS.

[40]  Isabelle Bloch,et al.  On fuzzy distances and their use in image processing under imprecision , 1999, Pattern Recognit..

[41]  Eric J. Johnson,et al.  Mindful judgment and decision making. , 2009, Annual review of psychology.

[42]  Henk A. L. Kiers,et al.  Techniques for rotating two or more loading matrices to optimal agreement and simple structure: A comparison and some technical details , 1997 .

[43]  L. Billard,et al.  Symbolic Covariance Principal Component Analysis and Visualization for Interval-Valued Data , 2012 .

[44]  Gisella Facchinetti,et al.  Ordinal scales and fuzzy set systems to measure agreement: An application to the evaluation of teaching activity , 2005 .

[45]  Joshua D. Greene,et al.  How (and where) does moral judgment work? , 2002, Trends in Cognitive Sciences.

[46]  Antonio Calcagnì,et al.  Dynamic Fuzzy Rating Tracker (DYFRAT): a novel methodology for modeling real-time dynamic cognitive processes in rating scales , 2014, Appl. Soft Comput..