Preparation of Ni/SiO2 catalyst with high thermal stability for CO2-reforming of CH4

[1]  A. Tas Preparation of Lead Zirconate Titanate (Pb(Zr0.52Ti0.48)O3) by Homogeneous Precipitation and Calcination , 2004 .

[2]  S. Yoshida,et al.  Structural and Catalytic Properties of Ni/SiO2 Prepared by Solution Exchange of Wet Silica Gel , 2001 .

[3]  T. Sodesawa,et al.  Nanosized Ni/SiO2 catalyst prepared by homogeneous precipitation in wet silica gel. , 2001, Journal of nanoscience and nanotechnology.

[4]  Liu Chang,et al.  Bound-state Ni species : a superior form in Ni-based catalyst for CH4/CO2 reforming , 2001 .

[5]  Ryōji Takahashi,et al.  Mass-Transfer Limitation in Mesopores of Ni–MgO Catalyst in Liquid-Phase Hydrogenation , 2000 .

[6]  Bo-Qing Xu,et al.  Highly active and stable Ni/ZrO2 catalyst for syngas production by CO2 reforming of methane , 2000 .

[7]  S. Yoshida,et al.  Ni/SiO2 catalyst with hierarchical pore structure prepared by phase separation in sol–gel process , 2000 .

[8]  K. Nakanishi,et al.  Tailoring mesopores in monolithic macroporous silica for HPLC , 2000 .

[9]  Y. Oh,et al.  Humidity Dependence of Apparent Dielectric Constant for DSP Cement Materials at High Frequencies , 1999 .

[10]  K. Tomishige,et al.  Studies on Carbon Deposition in CO2Reforming of CH4over Nickel–Magnesia Solid Solution Catalysts , 1999 .

[11]  J. Bitter,et al.  Deactivation and Coke Accumulation during CO2/CH4 Reforming over Pt Catalysts , 1999 .

[12]  T. Horiuchi,et al.  Isotope effect and rate-determining step of the CO2-Reforming of methane over supported Ni catalyst , 1998 .

[13]  Gao Qing Lu,et al.  CO2 reforming of methane on Ni catalysts: Effects of the support phase and preparation technique , 1998 .

[14]  C. Louis,et al.  MOLECULAR APPROACH TO THE MECHANISM OF DEPOSITION-PRECIPITATION OF THE NI(II) PHASE ON SILICA , 1998 .

[15]  J. Bitter,et al.  The state of Zirconia Suported Platinum Catalysts for CO2/CH4 Reforming , 1997 .

[16]  C. Louis,et al.  Characterization of the Ni(II) Phase Formed on Silica Upon Deposition−Precipitation , 1997 .

[17]  T. Horiuchi,et al.  Catalyst performance of MoS2 and WS2 for the CO2-reforming of CH4 Suppression of carbon deposition , 1997 .

[18]  T. Inui Highly effective gasoline synthesis from carbon dioxide , 1997 .

[19]  T. Fukui,et al.  Suppression of carbon deposition in the CO2-reforming of CH4 by adding basic metal oxides to a Ni/Al2O3 catalyst , 1996 .

[20]  Gao Qing Lu,et al.  Carbon Dioxide Reforming of Methane To Produce Synthesis Gas over Metal-Supported Catalysts: State of the Art , 1996 .

[21]  K. Nakanishi,et al.  Effects of aging and solvent exchange on pore structure of silica gels with interconnected macropores , 1995 .

[22]  J. H. Edwards,et al.  Potential sources of CO2 and the options for its large-scale utilisation now and in the future , 1995 .

[23]  K. Nakanishi,et al.  Small-angle X-ray scattering study of nanopore evolution of macroporous silica gel by solvent exchange , 1995 .

[24]  Malcolm L. H. Green,et al.  Partial oxidation of methane to synthesis gas using carbon dioxide , 1991, Nature.

[25]  J. Richardson,et al.  Carbon dioxide reforming of methane with supported rhodium , 1990 .

[26]  D. Stirling,et al.  The location of nickel oxide and nickel in silica-supported catalysts: Two forms of “NiO” and the assignment of temperature-programmed reduction profiles , 1988 .

[27]  C. H. Bartholomew Chemistry of nickel-alumina catalysts , 1976 .