Local convergence of inexact methods under the Hölder condition
暂无分享,去创建一个
[1] A. Galántai. The theory of Newton's method , 2000 .
[2] Raymond H. Chan,et al. On the Convergence Rate of a Quasi-Newton Method for Inverse Eigenvalue Problems , 1999 .
[3] Xinghua Wang,et al. Convergence of Newton's method and inverse function theorem in Banach space , 1999, Math. Comput..
[4] T. Ypma. Local Convergence of Inexact Newton Methods , 1984 .
[5] T. J. Ypma. Local convergence of difference Newton-like methods , 1983 .
[6] Shufang Xu,et al. An Introduction to Inverse Algebraic Eigenvalue Problems , 1999 .
[7] R. Dembo,et al. INEXACT NEWTON METHODS , 1982 .
[8] Huang Zheng-da,et al. On Newton's method under Hölder continuous derivative ✩ , 2002 .
[9] William F. Trench. Numerical Solution of the Inverse Eigenvalue Problem for Real Symmetric Toeplitz Matrices , 1997, SIAM J. Sci. Comput..
[10] B. Morini,et al. Inexact Methods: Forcing Terms and Conditioning , 2000 .
[11] Raymond H. Chan,et al. The Inexact Newton-Like Method for Inverse Eigenvalue Problem , 2003 .
[12] Xinghua Wang,et al. Local and global behavior for algorithms of solving equations , 2001 .
[13] Xinghua Wang,et al. Convergence of Newton's method and uniqueness of the solution of equations in Banach space , 2000 .
[14] Wang Xinghua,et al. Convergence of Newton's method and inverse function theorem in Banach space , 1999 .
[15] C. G. Broyden. A Class of Methods for Solving Nonlinear Simultaneous Equations , 1965 .
[16] Benedetta Morini,et al. Convergence behaviour of inexact Newton methods , 1999, Math. Comput..
[17] Ioannis K. Argyros,et al. A unifying local–semilocal convergence analysis and applications for two-point Newton-like methods in Banach space , 2004 .