A 300 GHz CMOS Transmitter With 32-QAM 17.5 Gb/s/ch Capability Over Six Channels

A 300 GHz transmitter (TX) fabricated using a 40 nm CMOS process is presented. It achieves 17.5 Gb/s/ch 32-quadrature amplitude modulation (QAM) transmission over six 5 GHz-wide channels covering the frequency range from 275 to 305 GHz. With the unity-power-gain frequency fmax of the NMOS transistor being below 300 GHz, the TX adopts a power amplifier-less QAM-capable architecture employing a highly linear subharmonic mixer called a cubic mixer. It is based on and as compact as a tripler and enables the massive power combining necessary above fmax without undue layout complication. The frequency-dependent characteristics of the cubic mixer are studied, and it is shown that even higher data rates of up to 30 Gb/s are possible at certain frequencies, where the channel signal-to-noise ratio is high. The design and the operation of the power-splitting and power-combining circuits are also described in detail. The measurements reported herein were all made “wired” via a WR3.4 waveguide.

[1]  Ali M. Niknejad,et al.  A 240GHz wideband QPSK transmitter in 65nm CMOS , 2014, 2014 IEEE Radio Frequency Integrated Circuits Symposium.

[2]  Kosuke Katayama,et al.  Power spectrum analysis of a tripler-based 300-GHz CMOS up-conversion mixer , 2016, 2016 46th European Microwave Conference (EuMC).

[3]  M. Seo,et al.  A single-chip 630 GHz transmitter with 210 GHz sub-harmonic PLL local oscillator in 130 nm InP HBT , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.

[4]  Kosuke Katayama,et al.  Wireless digital data transmission from a 300 GHz CMOS transmitter , 2016 .

[5]  Akihiko Hirata,et al.  Ultrafast Terahertz Wireless Communications Technologies , 2015, IEEE Transactions on Terahertz Science and Technology.

[6]  Axel Tessmann,et al.  Multi-Gigabit Millimeter-Wave Wireless Communication in Realistic Transmission Environments , 2015, IEEE Transactions on Terahertz Science and Technology.

[7]  Guillermo Carpintero,et al.  Recent Progress and Future Prospect of Photonics-Enabled Terahertz Communications Research , 2015, IEICE Trans. Electron..

[8]  D. Meier,et al.  Ultra-broadband MMIC-based wireless link at 240 GHz enabled by 64GS/s DAC , 2014, 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz).

[9]  R. Mavaddat Network Scattering Parameters , 1996, Advanced Series in Circuits and Systems.

[10]  Arnulf Leuther,et al.  Towards MMIC-Based 300GHz Indoor Wireless Communication Systems , 2015, IEICE Trans. Electron..

[11]  O. Ambacher,et al.  A subharmonic chipset for gigabit communication around 240 GHz , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.

[12]  Tadao Nagatsuma,et al.  Photonics for Millimeter-Wave and Terahertz Sensing and Measurement , 2016, IEICE Trans. Electron..

[13]  Peter A. Rizzi,et al.  Microwave Engineering: Passive Circuits , 2008 .

[14]  Jean-François Lampin,et al.  THz Communications using Photonics and Electronic Devices: the Race to Data-Rate , 2015 .

[15]  Zheng Wang,et al.  A CMOS 210-GHz Fundamental Transceiver With OOK Modulation , 2014, IEEE Journal of Solid-State Circuits.

[16]  Emilien Peytavit,et al.  Ultrawide-Bandwidth Single-Channel 0.4-THz Wireless Link Combining Broadband Quasi-Optic Photomixer and Coherent Detection , 2014, IEEE Transactions on Terahertz Science and Technology.

[17]  Ali M. Niknejad,et al.  A 260 GHz fully integrated CMOS transceiver for wireless chip-to-chip communication , 2012, 2012 Symposium on VLSI Circuits (VLSIC).

[18]  Tadao Nagatsuma,et al.  24 Gbit/s data transmission in 300 GHz band for future terahertz communications , 2012 .

[19]  Kosuke Katayama,et al.  Tehrahertz CMOS Design for Low-Power and High-Speed Wireless Communication , 2015, IEICE Trans. Electron..

[20]  Zhaocheng Wang,et al.  Terahertz Terabit Wireless Communication , 2011, IEEE Microwave Magazine.

[21]  Mehmet Kaynak,et al.  A 314 GHz, fully-integrated SiGe transmitter and receiver with integrated antenna , 2014, 2014 IEEE Radio Frequency Integrated Circuits Symposium.

[22]  Antonio Maffucci,et al.  Transmission lines and lumped circuits , 2001 .

[23]  Janusz Grzyb,et al.  A Fully Integrated 240-GHz Direct-Conversion Quadrature Transmitter and Receiver Chipset in SiGe Technology , 2016, IEEE Transactions on Microwave Theory and Techniques.

[24]  G. Ducournau,et al.  32 Gbit/s QPSK transmission at 385 GHz using coherent fibre-optic technologies and THz double heterodyne detection , 2015 .

[25]  Kosuke Katayama,et al.  CMOS 300-GHz 64-QAM transmitter , 2016, 2016 IEEE MTT-S International Microwave Symposium (IMS).

[26]  Yong-Zhong Xiong,et al.  A SiGe BiCMOS Transmitter/Receiver Chipset With On-Chip SIW Antennas for Terahertz Applications , 2012, IEEE Journal of Solid-State Circuits.

[27]  M.B. Steer,et al.  Accurate estimation of digital communication system metrics - SNR, EVM and /spl rho/ in a nonlinear amplifier environment , 2004, 64th ARFTG Microwave Measurements Conference, Fall 2004..

[28]  Kosuke Katayama,et al.  A 300-GHz 64-QAM CMOS transmitter with 21-Gb/s maximum per-channel data rate , 2016, 2016 11th European Microwave Integrated Circuits Conference (EuMIC).

[29]  Kosuke Katayama,et al.  20.1 A 300GHz 40nm CMOS transmitter with 32-QAM 17.5Gb/s/ch capability over 6 channels , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[30]  Shuhei Amakawa,et al.  Graphical approach to analysis and design of gain-boosted near-fmax feedback amplifiers , 2016, 2016 46th European Microwave Conference (EuMC).

[31]  Cheng Wang,et al.  0.34-THz Wireless Link Based on High-Order Modulation for Future Wireless Local Area Network Applications , 2014, IEEE Transactions on Terahertz Science and Technology.

[32]  T. Kurner,et al.  Short-Range Ultra-Broadband Terahertz Communications: Concepts and Perspectives , 2007, IEEE Antennas and Propagation Magazine.

[33]  Stephen A. Maas,et al.  Nonlinear Microwave and RF Circuits , 2003 .

[34]  Shuhei Amakawa,et al.  Theory of gain and stability of small-signal amplifiers with lossless reciprocal feedback , 2014, 2014 Asia-Pacific Microwave Conference.

[35]  Ho-Jin Song,et al.  50-Gb/s Direct Conversion QPSK Modulator and Demodulator MMICs for Terahertz Communications at 300 GHz , 2014, IEEE Transactions on Microwave Theory and Techniques.

[36]  M. Urteaga,et al.  300 GHz Integrated Heterodyne Receiver and Transmitter With On-Chip Fundamental Local Oscillator and Mixers , 2015, IEEE Transactions on Terahertz Science and Technology.

[37]  Minoru Fujishima,et al.  Recent progress and prospects of terahertz CMOS , 2015, IEICE Electron. Express.

[38]  Sebastian Priebe,et al.  Wireless digital data transmission at 300 GHz , 2010 .

[39]  Axel Tessmann,et al.  64 Gbit/s Transmission over 850 m Fixed Wireless Link at 240 GHz Carrier Frequency , 2015 .