Substrate-induced conformational changes and dynamics of UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltransferase-2.

[1]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[2]  M Levitt,et al.  Stabilization of phage T4 lysozyme by engineered disulfide bonds. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[3]  T. Blundell,et al.  Comparative protein modelling by satisfaction of spatial restraints. , 1993, Journal of molecular biology.

[4]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[5]  M. Klein,et al.  Constant pressure molecular dynamics algorithms , 1994 .

[6]  B. Brooks,et al.  Constant pressure molecular dynamics simulation: The Langevin piston method , 1995 .

[7]  Robert J. Woods,et al.  Molecular Mechanical and Molecular Dynamic Simulations of Glycoproteins and Oligosaccharides. 1. GLYCAM_93 Parameter Development , 1995 .

[8]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[9]  M. Hollingsworth,et al.  Structural analysis of peptide substrates for mucin-type O-glycosylation. , 1998, Biochemistry.

[10]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[11]  Laxmikant V. Kale,et al.  NAMD2: Greater Scalability for Parallel Molecular Dynamics , 1999 .

[12]  Jaroslav Koča,et al.  POTENTIAL ENERGY HYPERSURFACES OF NUCLEOTIDE SUGARS : AB INITIO CALCULATIONS, FORCE-FIELD PARAMETRIZATION, AND EXPLORATION OF THE FLEXIBILITY , 1999 .

[13]  Christian Cambillau,et al.  Crystal structures of the bovine β4galactosyltransferase catalytic domain and its complex with uridine diphosphogalactose , 1999, The EMBO journal.

[14]  Pedro M. Coutinho,et al.  Carbohydrate-active enzymes : an integrated database approach , 1999 .

[15]  L. Johnson,et al.  Phosphorylase recognition and phosphorolysis of its oligosaccharide substrate: answers to a long outstanding question , 2000, The EMBO journal.

[16]  Birte Svensson,et al.  Recent Advances in Carbohydrate Bioengineering , 1999 .

[17]  M. Hollingsworth,et al.  Structural effects of O-glycosylation on a 15-residue peptide from the mucin (MUC1) core protein. , 2000, Biochemistry.

[18]  A. Sali,et al.  Comparative protein structure modeling of genes and genomes. , 2000, Annual review of biophysics and biomolecular structure.

[19]  G. J. Swaminathan,et al.  Structure of UDP Complex of UDP-galactose:β-Galactoside-α-1,3-galactosyltransferase at 1.53-Å Resolution Reveals a Conformational Change in the Catalytically Important C Terminus* , 2001, The Journal of Biological Chemistry.

[20]  A. Imberty,et al.  Molecular dynamics simulations of solvated UDP-glucose in interaction with Mg2+ cations. , 2001, European journal of biochemistry.

[21]  O Hindsgaul,et al.  Bovine α1,3‐galactosyltransferase catalytic domain structure and its relationship with ABO histo‐blood group and glycosphingolipid glycosyltransferases , 2001, The EMBO journal.

[22]  B. Ramakrishnan,et al.  Crystal structure of lactose synthase reveals a large conformational change in its catalytic component, the beta1,4-galactosyltransferase-I. , 2001, Journal of molecular biology.

[23]  Stephen G. Withers,et al.  Crystal structure of the retaining galactosyltransferase LgtC from Neisseria meningitidis in complex with donor and acceptor sugar analogs , 2001, Nature Structural Biology.

[24]  Andrew M Wollacott,et al.  Virtual interaction profiles of proteins. , 2001, Journal of Molecular Biology.

[25]  Monica M. Palcic,et al.  The structural basis for specificity in human ABO(H) blood group biosynthesis , 2002, Nature Structural Biology.

[26]  G. J. Swaminathan,et al.  Structural Basis of Ordered Binding of Donor and Acceptor Substrates to the Retaining Glycosyltransferase, α-1,3-Galactosyltransferase* , 2002, The Journal of Biological Chemistry.

[27]  Ruth Lloyd,et al.  Insights into trehalose synthesis provided by the structure of the retaining glucosyltransferase OtsA. , 2002, Chemistry & biology.

[28]  Ruth Nussinov,et al.  Triggering loops and enzyme function: identification of loops that trigger and modulate movements. , 2003, Journal of molecular biology.

[29]  B. Ramakrishnan,et al.  The role of tryptophan 314 in the conformational changes of beta1,4-galactosyltransferase-I. , 2003, Journal of molecular biology.

[30]  Fumiyasu Taniguchi,et al.  Crystal Structure of an α1,4-N-Acetylhexosaminyltransferase (EXTL2), a Member of the Exostosin Gene Family Involved in Heparan Sulfate Biosynthesis* , 2003, The Journal of Biological Chemistry.

[31]  Lawrence A Tabak,et al.  All in the family: the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases. , 2003, Glycobiology.

[32]  Keith Brew,et al.  Roles of individual enzyme-substrate interactions by alpha-1,3-galactosyltransferase in catalysis and specificity. , 2003, Biochemistry.

[33]  R. Nussinov,et al.  Interdependence of backbone flexibility, residue conservation, and enzyme function: a case study on beta1,4-galactosyltransferase-I. , 2003, Biochemistry.

[34]  M. Palcic,et al.  The Influence of an Intramolecular Hydrogen Bond in Differential Recognition of Inhibitory Acceptor Analogs by Human ABO(H) Blood Group A and B Glycosyltransferases* , 2003, Journal of Biological Chemistry.

[35]  Joseph Shiloach,et al.  The beginnings of mucin biosynthesis: the crystal structure of UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferase-T1. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[36]  S. Withers,et al.  Intermediate Trapping on a Mutant Retaining α-Galactosyltransferase Identifies an Unexpected Aspartate Residue* , 2004, Journal of Biological Chemistry.

[37]  B. Ramakrishnan,et al.  Structure and catalytic cycle of β-1,4-galactosyltransferase , 2004 .

[38]  S. Rick,et al.  Hydration free energies and entropies for water in protein interiors. , 2004, Journal of the American Chemical Society.

[39]  P. Kulhánek,et al.  Molecular dynamics simulations of glycosyltransferase LgtC. , 2004, Carbohydrate research.

[40]  Stephen H. Bryant,et al.  CD-Search: protein domain annotations on the fly , 2004, Nucleic Acids Res..

[41]  S. Withers,et al.  Mechanistic analogies amongst carbohydrate modifying enzymes. , 2004, Chemical communications.

[42]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[43]  T. Kitahara,et al.  Chemistry and biology of moverastins, inhibitors of cancer cell migration, produced by Aspergillus. , 2005, Chemistry & biology.

[44]  D. Temiakov,et al.  Probing conformational changes in T7 RNA polymerase during initiation and termination by using engineered disulfide linkages. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[45]  S. Brunak,et al.  Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. , 2005, Glycobiology.

[46]  Gerhard Hummer,et al.  Molecular dynamics simulations of Alzheimer's β-amyloid protofilaments , 2005 .

[47]  B. Nidetzky,et al.  Structure-function relationships for Schizophyllum commune trehalose phosphorylase and their implications for the catalytic mechanism of family GT-4 glycosyltransferases. , 2006, The Biochemical journal.

[48]  Hiromichi Sawaki,et al.  Structural basis of carbohydrate transfer activity by human UDP-GalNAc: polypeptide alpha-N-acetylgalactosaminyltransferase (pp-GalNAc-T10). , 2006, Journal of molecular biology.

[49]  David Baker,et al.  Recapitulation and design of protein binding peptide structures and sequences. , 2006, Journal of molecular biology.

[50]  A. Monegal,et al.  Chemical rescue of alpha3-galactosyltransferase. Implications in the mechanism of retaining glycosyltransferases. , 2006, Journal of the American Chemical Society.

[51]  Jaroslav Koca,et al.  Structures and mechanisms of glycosyltransferases. , 2006, Glycobiology.

[52]  Lawrence A Tabak,et al.  Dynamic Association between the Catalytic and Lectin Domains of Human UDP-GalNAc:Polypeptide α-N-Acetylgalactosaminyltransferase-2* , 2006, Journal of Biological Chemistry.