Completely positive classical structures and sequentializable quantum protocols

We study classical structures in various categories of completely positive morphisms: on sets and relations, on cobordisms, on a free dagger compact category, and on Hilbert spaces. As an application, we prove that quantum maps with commuting Kraus operators can be sequentialized. Hence such protocols are precisely as robust under general dephasing noise when entangled as when sequential.

[1]  Samson Abramsky,et al.  H*-algebras and nonunital Frobenius algebras: first steps in infinite-dimensional categorical quantum mechanics , 2010, 1011.6123.

[2]  Joachim Kock,et al.  Frobenius Algebras and 2-D Topological Quantum Field Theories , 2004 .

[3]  Bob Coecke,et al.  Interacting quantum observables: categorical algebra and diagrammatics , 2009, ArXiv.

[4]  Vern Paulsen Completely Bounded Maps and Operator Algebras: Polynomially Bounded and Power-Bounded Operators , 2003 .

[5]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[6]  Animesh Datta,et al.  On decoherence in quantum clock synchronization , 2006 .

[7]  Sergio Boixo,et al.  Generalized limits for single-parameter quantum estimation. , 2006, Physical review letters.

[8]  R. Bhatia Positive Definite Matrices , 2007 .

[9]  Edward G. Effros,et al.  Injectivity and operator spaces , 1977 .

[10]  Robert Spalek,et al.  Quantum Fan-out is Powerful , 2005, Theory Comput..

[11]  P. Selinger Towards a semantics for higher-order quantum computation , 2004 .

[12]  Peter Selinger,et al.  Dagger Compact Closed Categories and Completely Positive Maps: (Extended Abstract) , 2007, QPL.

[13]  Martin Nilsson,et al.  Parallel Quantum Computation and Quantum Codes , 2001, SIAM J. Comput..

[14]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, LICS 2004.

[15]  D. Berry,et al.  Entanglement-free Heisenberg-limited phase estimation , 2007, Nature.

[16]  Samson Abramsky,et al.  Abstract Scalars, Loops, and Free Traced and Strongly Compact Closed Categories , 2005, CALCO.

[17]  Linear maps of *-algebras preserving the absolute value , 1979 .

[18]  P. Selinger A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.

[19]  H. Barnum,et al.  Generalized no-broadcasting theorem. , 2007, Physical review letters.

[20]  B. Coecke,et al.  Categories for the practising physicist , 2009, 0905.3010.

[21]  Dusko Pavlovic,et al.  Quantum and Classical Structures in Nondeterminstic Computation , 2008, QI.

[22]  Dusko Pavlovic,et al.  A new description of orthogonal bases , 2008, Mathematical Structures in Computer Science.

[23]  Chris Heunen,et al.  Entangled and sequential quantum protocols with dephasing. , 2011, Physical review letters.

[24]  Terry Rudolph,et al.  Quantum communication complexity of establishing a shared reference frame. , 2003, Physical review letters.