About Subtransversality of Collections of Sets

We provide dual sufficient conditions for subtransversality of collections of sets in an Asplund space setting. For the convex case, we formulate a necessary and sufficient dual criterion of subtransversality in general Banach spaces. Our more general results suggest an intermediate notion of subtransversality, what we call weak intrinsic subtransversality, which lies between intrinsic transversality and subtransversality in Asplund spaces.

[1]  A. Kruger About Regularity of Collections of Sets , 2006 .

[2]  A. Kruger On Fréchet Subdifferentials , 2003 .

[3]  Alexander Kruger,et al.  Stationarity and Regularity Concepts for Set Systems , 2005, Systems, Control, Modeling and Optimization.

[4]  Sien Deng,et al.  Weak sharp minima revisited, part II: application to linear regularity and error bounds , 2005, Math. Program..

[5]  Adrian S. Lewis,et al.  Alternating Projections on Manifolds , 2008, Math. Oper. Res..

[6]  R. Rockafellar,et al.  Implicit Functions and Solution Mappings , 2009 .

[7]  Alexander Y. Kruger,et al.  Quantitative Characterizations of Regularity Properties of Collections of Sets , 2013, J. Optim. Theory Appl..

[8]  A. Ioffe,et al.  METRIC REGULARITY—A SURVEY PART 1. THEORY , 2016, Journal of the Australian Mathematical Society.

[9]  A. Kruger About Intrinsic Transversality of Pairs of Sets , 2017, 1701.08246.

[10]  B. Mordukhovich Variational Analysis and Generalized Differentiation II: Applications , 2006 .

[11]  Alexander Y. Kruger,et al.  About uniform regularity of collections of sets , 2013 .

[12]  R. Phelps Convex Functions, Monotone Operators and Differentiability , 1989 .

[13]  Wei Hong Yang,et al.  Regularities and their relations to error bounds , 2004, Math. Program..

[14]  A. Ioffe Approximate subdifferentials and applications II , 1986 .

[15]  I. Ekeland On the variational principle , 1974 .

[16]  Dmitriy Drusvyatskiy,et al.  Transversality and Alternating Projections for Nonconvex Sets , 2014, Found. Comput. Math..

[17]  Alexander Y. Kruger,et al.  Regularity of collections of sets and convergence of inexact alternating projections , 2015, 1501.04191.

[18]  Aude Rondepierre,et al.  On Local Convergence of the Method of Alternating Projections , 2013, Foundations of Computational Mathematics.

[19]  J. Burke,et al.  Weak sharp minima revisited Part I: basic theory , 2002 .

[20]  A. Ioffe,et al.  Theory of extremal problems , 1979 .

[21]  D. Azé,et al.  A survey on error bounds for lower semicontinuous functions , 2003 .

[22]  Heinz H. Bauschke,et al.  On the convergence of von Neumann's alternating projection algorithm for two sets , 1993 .

[23]  J. Penot Calculus Without Derivatives , 2012 .

[24]  A. Kruger Error bounds and metric subregularity , 2014, 1405.1130.

[25]  R. Tyrrell Rockafellar,et al.  Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.

[26]  Michel Théra,et al.  Metric Inequality, Subdifferential Calculus and Applications , 2001 .

[27]  K. Sheinkopf Mandell, Maurice I. Advertising. 2nd ed. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1974 , 1974 .

[28]  B. Dundas,et al.  DIFFERENTIAL TOPOLOGY , 2002 .

[29]  Szymon Dolecki,et al.  Tangency and differentiation: Some applications of convergence theory , 1982 .

[30]  Heinz H. Bauschke,et al.  On Projection Algorithms for Solving Convex Feasibility Problems , 1996, SIAM Rev..

[31]  Boris Polyak,et al.  The method of projections for finding the common point of convex sets , 1967 .

[32]  Marián Fabian,et al.  Sub differentiability and trustworthiness in the light of a new variational principle of Borwein and Preiss , 1989 .

[33]  Wu Li,et al.  Strong CHIP, normality, and linear regularity of convex sets , 2005 .

[34]  G. Jameson The Duality of Pairs of Wedges , 1972 .

[35]  Yu. S. Ledyaev,et al.  Nonsmooth analysis and control theory , 1998 .

[36]  Wu Li,et al.  Asymptotic constraint qualifications and global error bounds for convex inequalities , 1999, Math. Program..

[37]  Xi Yin Zheng,et al.  Linear Regularity for a Collection of Subsmooth Sets in Banach Spaces , 2008, SIAM J. Optim..

[38]  D. Klatte Book review: Implicit Functions and Solution Mappings:A View from Variational Analysis. Second Edition. By A. L. Dontchev and R. T. Rockafellar. Springer, New York, 2014 , 2015 .

[39]  Heinz H. Bauschke,et al.  Restricted Normal Cones and the Method of Alternating Projections: Theory , 2012 .

[40]  D. Russell Luke,et al.  Nonconvex Notions of Regularity and Convergence of Fundamental Algorithms for Feasibility Problems , 2012, SIAM J. Optim..

[41]  Jen-Chih Yao,et al.  Uniform subsmoothness and linear regularity for a collection of infinitely many closed sets , 2010 .

[42]  A. Ioffe METRIC REGULARITY—A SURVEY PART II. APPLICATIONS , 2016, Journal of the Australian Mathematical Society.

[43]  Heinz H. Bauschke,et al.  Restricted Normal Cones and the Method of Alternating Projections: Applications , 2012, 1205.0318.

[44]  A. Kruger,et al.  Error Bounds: Necessary and Sufficient Conditions , 2010 .

[45]  A. Ioffe Approximate subdifferentials and applications 3: the metric theory , 1989 .

[46]  Alexander Y. Kruger,et al.  ABOUT STATIONARITY AND REGULARITY IN VARIATIONAL ANALYSIS , 2009 .

[47]  Hédy Attouch,et al.  Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Lojasiewicz Inequality , 2008, Math. Oper. Res..

[48]  J. Borwein,et al.  Techniques of variational analysis , 2005 .

[49]  C. Zălinescu Convex analysis in general vector spaces , 2002 .

[50]  A. Ioffe Metric regularity and subdifferential calculus , 2000 .

[51]  R. T. Rockafellar,et al.  STATIONARITY AND REGULARITY OF SET SYSTEMS , 2004 .

[52]  M. Ferris,et al.  Weak sharp minima in mathematical programming , 1993 .

[53]  Adrian S. Lewis,et al.  Local Linear Convergence for Alternating and Averaged Nonconvex Projections , 2009, Found. Comput. Math..

[54]  Alexander Y. Kruger,et al.  Set regularities and feasibility problems , 2016, Math. Program..

[55]  Chong Li,et al.  The SECQ, Linear Regularity, and the Strong CHIP for an Infinite System of Closed Convex Sets in Normed Linear Spaces , 2007, SIAM J. Optim..