echet Means and Statistics on Vineyards

In order to use persistence diagrams as a true statistical tool, it would be very useful to have a good notion of mean and variance for a set of diagrams. In [20], Mileyko and his collaborators made the rst study of the properties of the Fr echet mean in ( Dp;Wp), the space of persistence diagrams equipped with the p-th Wasserstein metric. In particular, they showed that the Fr echet mean of a nite

[1]  Vin de Silva,et al.  On the Local Behavior of Spaces of Natural Images , 2007, International Journal of Computer Vision.

[2]  Herbert Edelsbrunner,et al.  Extreme Elevation on a 2-Manifold , 2006, Discret. Comput. Geom..

[3]  Yuri Dabaghian,et al.  A Topological Paradigm for Hippocampal Spatial Map Formation Using Persistent Homology , 2012, PLoS Comput. Biol..

[4]  Jose A. Perea,et al.  SW1PerS: Sliding windows and 1-persistence scoring; discovering periodicity in gene expression time series data , 2015, BMC Bioinformatics.

[5]  Herbert Edelsbrunner,et al.  Interface surfaces for protein-protein complexes , 2006, J. ACM.

[6]  H. Edelsbrunner,et al.  Homological illusions of persistence and stability , 2008 .

[7]  S. Mukherjee,et al.  Probability measures on the space of persistence diagrams , 2011 .

[8]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[9]  David Cohen-Steiner,et al.  Vines and vineyards by updating persistence in linear time , 2006, SCG '06.

[10]  Kenneth A. Brown,et al.  Nonlinear Statistics of Human Speech Data , 2009, Int. J. Bifurc. Chaos.

[11]  Paul R Zurek,et al.  GiA Roots: software for the high throughput analysis of plant root system architecture , 2012, BMC Plant Biology.

[12]  Leonidas J. Guibas,et al.  Proximity of persistence modules and their diagrams , 2009, SCG '09.

[13]  Herbert Edelsbrunner,et al.  Protein-protein interfaces: properties, preferences, and projections. , 2007 .

[14]  J. Munkres ALGORITHMS FOR THE ASSIGNMENT AND TRANSIORTATION tROBLEMS* , 1957 .

[15]  Valerio Pascucci,et al.  Morse-smale complexes for piecewise linear 3-manifolds , 2003, SCG '03.

[16]  R. Tibshirani,et al.  An introduction to the bootstrap , 1993 .

[17]  Jennifer Gamble,et al.  Exploring uses of persistent homology for statistical analysis of landmark-based shape data , 2010, J. Multivar. Anal..

[18]  Herbert Edelsbrunner,et al.  Topological persistence and simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[19]  Frédéric Chazal,et al.  Optimal rates of convergence for persistence diagrams in Topological Data Analysis , 2013, ArXiv.

[20]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2007, Discret. Comput. Geom..

[21]  Earl F. Glynn,et al.  Comparison of Pattern Detection Methods in Microarray Time Series of the Segmentation Clock , 2008, PloS one.