Mechanical Material Properties

[1]  Lisa Choe,et al.  Influence of Material Models on Predicting the Fire Behavior of Steel Columns , 2017, Fire technology.

[2]  F. Au,et al.  Thermal creep and relaxation of prestressing steel , 2016 .

[3]  Luke Bisby,et al.  Creep of prestressing steels in fire , 2016 .

[4]  V. Kodur,et al.  Effect of temperature on the mechanical properties of low relaxation seven-wire prestressing strand , 2016 .

[5]  Frans S.K. Bijlaard,et al.  Mechanical properties and design recommendations of very high strength steel S960 in fire , 2016 .

[6]  Venkatesh Kodur,et al.  Effect of temperature on creep in ASTM A572 high-strength low-alloy steels , 2015 .

[7]  Michael D. Engelhardt,et al.  High-temperature creep buckling phenomenon of steel columns subjected to fire , 2014 .

[8]  Venkatesh Kodur,et al.  Properties of Concrete at Elevated Temperatures , 2014 .

[9]  Guanyu Hu,et al.  Experimental investigation of mechanical properties of ASTM A992 steel at elevated temperatures , 2013 .

[10]  Chen Wei,et al.  Mechanical properties of G550 cold-formed steel under transient and steady state conditions , 2012 .

[11]  Michael D. Engelhardt,et al.  Mechanical properties of ASTM A992 steel after fire , 2012 .

[12]  Jean-Marc Franssen,et al.  Behaviour of Grade 8.8 bolts under natural fire conditions—Tests and model , 2011 .

[13]  Mahen Mahendran,et al.  Mechanical properties of cold-formed steels at elevated temperatures , 2011 .

[14]  Masoud Ghandehari,et al.  Comparison of compressive and splitting tensile strength of high-strength concrete with and without polypropylene fibers heated to high temperatures , 2009 .

[15]  Mahen Mahendran,et al.  Experimental study of the mechanical properties of light gauge cold-formed steels at elevated temperatures , 2009 .

[16]  B. M. Gonzalez,et al.  Effect of finishing rolling temperature on fire resistance and dynamic strain aging behavior of a structural steel , 2008 .

[17]  Ben Young,et al.  Stress–strain curves for stainless steel at elevated temperatures , 2006 .

[18]  Kristian Dahl Hertz,et al.  Reinforcement data for fire safety design , 2004 .

[19]  F. S. Kelly,et al.  Microstructure and properties of nippon fire-resistant steels , 1999 .

[20]  Kazuo Funato,et al.  Development of Fire-Resistant Steel for Building Construction. , 1993 .

[21]  A. Brownrigg,et al.  Fire resistant high strength low alloy steels , 1990 .

[22]  C. Castillo,et al.  Effect of transient high temperature on high-strength concrete , 1990 .

[23]  Ulrich Schneider,et al.  Concrete at High Temperatures -- A General Review* , 1988 .

[24]  B. R. Kirby,et al.  High temperature properties of hot-rolled, structural steels for use in fire engineering design studies , 1988 .

[25]  Gabriel A. Khoury,et al.  Strain of concrete during first heating to 600°C under load , 1985 .

[26]  G. Painter,et al.  Sustained High Temperature Effecton Concretes Made With Normal Portland Cement, Normal Portland Cement and Slag, or Normal Portland Cement and Fly Ash , 1982 .

[27]  B. R. Kirby,et al.  The reinstatement of fire damaged steel framed structures , 1981 .

[28]  F. Furumura,et al.  PRIMARY CREEP OF STRUCTURAL STEEL (SM 58Q) AT HIGH TEMPERATURES , 1980 .

[29]  T. Z. Harmathy A Comprehensive Creep Model , 1967 .