General classes of Bayesian lower bounds for outage error probability and MSE

In this paper, new classes of lower bounds on the outage error probability and on the minimum mean-square-error (MSE) in Bayesian parameter estimation are proposed. The outage error probability and the MSE are important criteria in parameter estimation. However, computation of these terms is usually not tractable. The proposed outage error probability class of lower bounds is derived using reverse Hölder inequality. This class is utilized to derive a new class of Bayesian MSE bounds. It is shown that the tightest bound from the proposed class is achieved by the generalized maximum a-posteriori probability (MAP) estimation. In addition, for unimodal symmetric conditional probability density functions, the tightest MSE bound in this class coincides with the minimum MSE (MMSE) obtained by the conditional expectation estimator. It is proved that the tightest MSE bound in this class is always tighter than the Ziv-Zakai lower bounds.

[1]  Yossef Steinberg,et al.  Extended Ziv-Zakai lower bound for vector parameter estimation , 1997, IEEE Trans. Inf. Theory.

[2]  L. Breuer Introduction to Stochastic Processes , 2022, Statistical Methods for Climate Scientists.

[3]  Sandro Bellini,et al.  Bounds on Error in Signal Parameter Estimation , 1974, IEEE Trans. Commun..

[4]  Albert A. Mullin,et al.  Extraction of signals from noise , 1970 .

[5]  A. Gualtierotti H. L. Van Trees, Detection, Estimation, and Modulation Theory, , 1976 .

[6]  John P. Ianniello,et al.  Lower bounds on worst case probability of large error for two channel time delay estimation , 1985, IEEE Trans. Acoust. Speech Signal Process..

[7]  Jacob Ziv,et al.  Some lower bounds on signal parameter estimation , 1969, IEEE Trans. Inf. Theory.

[8]  Joseph Tabrikian,et al.  Classes of lower bounds on outage error probability and MSE in Bayesian parameter estimation , 2010, ArXiv.

[9]  Jacob Ziv,et al.  Improved Lower Bounds on Signal Parameter Estimation , 1975, IEEE Trans. Inf. Theory.

[10]  Hagit Messer,et al.  A Barankin-type lower bound on the estimation error of a hybrid parameter vector , 1997, IEEE Trans. Inf. Theory.

[11]  Emanuel Parzen,et al.  Review of 'Extraction of Signals from Noise' (Wainstein, L. A., and Zubakov, V. D.; 1962) , 1963, IEEE Transactions on Information Theory.

[12]  H. V. Trees,et al.  Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking , 2007 .

[13]  P. Heywood Trigonometric Series , 1968, Nature.

[14]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .