Health impact and toxicological effects of nanomaterials in the lung

The manufacture, use and disposal of nanomaterials will result in increased human exposures to engineered nanoparticles (ENPs), potentially via the lung. ENPs differ physically and chemically from natural‐ or combustion‐derived nanoparticles (NP) in important respects. While there are parallels with ultrafine aerosol particles in the atmosphere and colloids in water, there remain some unique issues and impacts of engineered materials on lung health that require consideration and urgent study.

[1]  Marianne Geiser,et al.  Deposition and biokinetics of inhaled nanoparticles , 2010, Particle and Fibre Toxicology.

[2]  Annette Peters,et al.  Translocation and potential neurological effects of fine and ultrafine particles a critical update , 2006, Particle and Fibre Toxicology.

[3]  Sai T Reddy,et al.  Targeting dendritic cells with biomaterials: developing the next generation of vaccines. , 2006, Trends in immunology.

[4]  David B Warheit,et al.  Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. , 2007, Toxicological sciences : an official journal of the Society of Toxicology.

[5]  D. Maysinger,et al.  Micellar Nanocontainers Distribute to Defined Cytoplasmic Organelles , 2003, Science.

[6]  C. rd,et al.  Epidemiology of fine particulate air pollution and human health: biologic mechanisms and who's at risk? , 2000 .

[7]  B. Lehnert,et al.  Correlation between particle size, in vivo particle persistence, and lung injury. , 1994, Environmental health perspectives.

[8]  Takuro Niidome,et al.  PEG-modified gold nanorods with a stealth character for in vivo applications. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[9]  P. Vokonas,et al.  Inflammatory markers and particulate air pollution: characterizing the pathway to disease. , 2006, International journal of epidemiology.

[10]  Lesley Rushton,et al.  Carbon in airway macrophages and lung function in children , 2006, European Respiratory Review.

[11]  W. Stark,et al.  The degree and kind of agglomeration affect carbon nanotube cytotoxicity. , 2007, Toxicology letters.

[12]  M. Key National Institute for Occupational Safety and Health; occupational exposure to inorganic lead: request for comments and information; republication--NIOSH. Request for comments and information relevant to occupational exposure to inorganic lead. , 1997, Federal register.

[13]  Morton Lippmann,et al.  PM Source Apportionment for Short-Term Cardiac Function Changes in ApoE−/− Mice , 2005, Environmental health perspectives.

[14]  A. Shimada,et al.  Translocation Pathway of the Intratracheally Instilled Ultrafine Particles from the Lung into the Blood Circulation in the Mouse , 2006, Toxicologic pathology.

[15]  P. Gershkovich,et al.  Protonated nanostructured aluminosilicate (NSAS) reduces plasma cholesterol concentrations and atherosclerotic lesions in Apolipoprotein E deficient mice fed a high cholesterol and high fat diet , 2009, Lipids in Health and Disease.

[16]  J. Isaacs,et al.  Airborne nanoparticle exposures associated with the manual handling of nanoalumina and nanosilver in fume hoods , 2009 .

[17]  William D. Travis,et al.  Case Report: Lung Disease in World Trade Center Responders Exposed to Dust and Smoke: Carbon Nanotubes Found in the Lungs of World Trade Center Patients and Dust Samples , 2009, Environmental health perspectives.

[18]  J. Bonner Nanoparticles as a potential cause of pleural and interstitial lung disease. , 2010, Proceedings of the American Thoracic Society.

[19]  M. Nieuwenhuijsen,et al.  Lung lining liquid modifies PM(2.5) in favor of particle aggregation: a protective mechanism. , 2002, American journal of physiology. Lung cellular and molecular physiology.

[20]  Morteza Mahmoudi,et al.  Protein-Nanoparticle Interactions , 2013 .

[21]  W. Kreyling,et al.  Translocation of Inhaled Ultrafine Particles to the Brain , 2004, Inhalation toxicology.

[22]  Håkan Wallin,et al.  Effects of prenatal exposure to surface-coated nanosized titanium dioxide (UV-Titan). A study in mice , 2010, Particle and Fibre Toxicology.

[23]  J. Paulauskis,et al.  Endocytosis of ultrafine particles by A549 cells. , 2001, American journal of respiratory cell and molecular biology.

[24]  M. Lippmann,et al.  Health effects of concentrated ambient air particulate matter (CAPs) and its components , 2009, Critical reviews in toxicology.

[25]  Hak Soo Choi,et al.  Rapid translocation of nanoparticles from the lung airspaces to the body , 2010, Nature Biotechnology.

[26]  Vincent Castranova,et al.  Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling , 2009, Particle and Fibre Toxicology.

[27]  G. Oberdörster,et al.  Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles , 2005, Environmental health perspectives.

[28]  E. Kuempel,et al.  Occupational exposure to titanium dioxide , 2011 .

[29]  M. Mahmoudi,et al.  Protein-nanoparticle interactions: opportunities and challenges. , 2011, Chemical reviews.

[30]  S. K. Sundaram,et al.  Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. , 2007, Toxicological sciences : an official journal of the Society of Toxicology.

[31]  Christian Mühlfeld,et al.  Re-evaluation of pulmonary titanium dioxide nanoparticle distribution using the "relative deposition index": Evidence for clearance through microvasculature , 2007, Particle and Fibre Toxicology.

[32]  Kevin Kendall,et al.  Adhesion of Cells, Viruses and Nanoparticles , 2010 .

[33]  J. Nagy,et al.  Respiratory toxicity of multi-wall carbon nanotubes. , 2005, Toxicology and applied pharmacology.

[34]  Peter Wick,et al.  Barrier Capacity of Human Placenta for Nanosized Materials , 2009, Environmental health perspectives.

[35]  Craig A. Poland,et al.  Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. , 2008, Nature nanotechnology.

[36]  A. Nel,et al.  Particulate matter and atherosclerosis: role of particle size, composition and oxidative stress , 2009, Particle and Fibre Toxicology.

[37]  A Gulino,et al.  Biotechnology and molecular diagnostics. , 1999, Forum.

[38]  Patrick Winter,et al.  Nanomedicine Opportunities in Cardiology , 2006, Annals of the New York Academy of Sciences.

[39]  A. Florence,et al.  Nanoparticles as carriers for oral peptide absorption: Studies on particle uptake and fate , 1995 .

[40]  J. Hogg,et al.  Exposure to ambient particles accelerates monocyte release from bone marrow in atherosclerotic rabbits. , 2004, American journal of physiology. Lung cellular and molecular physiology.

[41]  B. Nowack,et al.  Exposure modeling of engineered nanoparticles in the environment. , 2008, Environmental science & technology.

[42]  P. Couvreur,et al.  Nanocarriers’ entry into the cell: relevance to drug delivery , 2009, Cellular and Molecular Life Sciences.

[43]  Christopher J. Rhodes,et al.  Role of oxygen radicals in DNA damage and cancer incidence , 2004, Molecular and Cellular Biochemistry.

[44]  J. Whitsett,et al.  The pulmonary collectins, SP-A and SP-D, orchestrate innate immunity in the lung. , 2002, The Journal of clinical investigation.

[45]  W. D. de Jong,et al.  Nano-silver – a review of available data and knowledge gaps in human and environmental risk assessment , 2009 .

[46]  Jianmin Chen,et al.  Quantification of extrapulmonary translocation of intratracheal-instilled particles in vivo in rats: effect of lipopolysaccharide. , 2006, Toxicology.

[47]  J. Finkelstein,et al.  Translocation of Inhaled Ultrafine Manganese Oxide Particles to the Central Nervous System , 2006, Environmental health perspectives.

[48]  R. Aitken,et al.  Assessing exposure to airborne nanomaterials: Current abilities and future requirements , 2007 .

[49]  Stephen R. Wilson,et al.  [60]fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. , 2005, Nano letters.

[50]  Håkan Wallin,et al.  Kupffer cells are central in the removal of nanoparticles from the organism , 2007, Particle and Fibre Toxicology.

[51]  P. Howarth,et al.  Defective epithelial barrier function in asthma. , 2011, The Journal of allergy and clinical immunology.

[52]  W. MacNee,et al.  Free radical activity of PM10: iron-mediated generation of hydroxyl radicals. , 1997, Environmental health perspectives.

[53]  Jun Qian,et al.  Body distribution and in situ evading of phagocytic uptake by macrophages of long-circulating poly (ethylene glycol) cyanoacrylate-co-n-hexadecyl cyanoacrylate nanoparticles , 2005, Acta Pharmacologica Sinica.

[54]  M. Green Air pollution and health , 1995 .

[55]  Ken Takeda,et al.  Nanoparticles Transferred from Pregnant Mice to Their Offspring Can Damage the Genital and Cranial Nerve Systems , 2009 .

[56]  Martin Mohr,et al.  Oxidative stress and inflammation response after nanoparticle exposure: differences between human lung cell monocultures and an advanced three-dimensional model of the human epithelial airways , 2010, Journal of The Royal Society Interface.

[57]  David B Warheit,et al.  A role for nanoparticle surface reactivity in facilitating pulmonary toxicity and development of a base set of hazard assays as a component of nanoparticle risk management , 2009, Inhalation toxicology.

[58]  D. Discher,et al.  Lung vascular targeting through inhalation delivery: Insight from filamentous viruses and other shapes , 2011, IUBMB life.

[59]  David B Warheit,et al.  Long-term pulmonary responses of three laboratory rodent species to subchronic inhalation of pigmentary titanium dioxide particles. , 2002, Toxicological sciences : an official journal of the Society of Toxicology.

[60]  N. Palaniyar,et al.  A Recombinant Fragment of Human Surfactant Protein D Reduces Alveolar Macrophage Apoptosis and Pro‐Inflammatory Cytokines in Mice Developing Pulmonary Emphysema , 2003, Annals of the New York Academy of Sciences.

[61]  J. Powell,et al.  Dietary microparticles and their impact on tolerance and immune responsiveness of the gastrointestinal tract , 2007, British Journal of Nutrition.

[62]  J. Chung,et al.  Silver nanoparticles enhance thrombus formation through increased platelet aggregation and procoagulant activity , 2011, Nanotoxicology.

[63]  A. Malik,et al.  Quantitative analysis of albumin uptake and transport in the rat microvessel endothelial monolayer. , 2003, American journal of physiology. Lung cellular and molecular physiology.

[64]  S. Radford,et al.  Nucleation of protein fibrillation by nanoparticles , 2007, Proceedings of the National Academy of Sciences.

[65]  D. Dinsdale,et al.  Lung exposure to nanoparticles modulates an asthmatic response in a mouse model , 2010, European Respiratory Journal.

[66]  M. Andersen,et al.  Inhaled Carbon Nanotubes Reach the Sub-Pleural Tissue in Mice , 2009, Nature nanotechnology.

[67]  I. Kubota,et al.  Increased surfactant protein‐D and foamy macrophages in smoking‐induced mouse emphysema , 2007, Respirology.

[68]  Anna A Shvedova,et al.  Sequential Exposure to Carbon Nanotubes and Bacteria Enhances Pulmonary Inflammation and Infectivity. Materials and Methods , 2022 .

[69]  Marianne Geiser,et al.  Influence of surface chemistry and topography of particles on their immersion into the lung's surface-lining layer. , 2003, Journal of applied physiology.

[70]  L. Vroman,et al.  Interaction of high molecular weight kininogen, factor XII, and fibrinogen in plasma at interfaces. , 1980, Blood.

[71]  T. Xia,et al.  Understanding biophysicochemical interactions at the nano-bio interface. , 2009, Nature materials.

[72]  Daniel Krewski,et al.  Lung Cancer and Cardiovascular Disease Mortality Associated with Ambient Air Pollution and Cigarette Smoke: Shape of the Exposure–Response Relationships , 2011, Environmental health perspectives.

[73]  Nicklas Raun Jacobsen,et al.  Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoE-/- mice , 2009, Particle and Fibre Toxicology.

[74]  Iseult Lynch,et al.  Serum heat inactivation affects protein corona composition and nanoparticle uptake. , 2010, Biomaterials.

[75]  J. Schlager,et al.  DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. , 2008, Toxicology and applied pharmacology.

[76]  R. Medzhitov,et al.  Toll-dependent selection of microbial antigens for presentation by dendritic cells , 2006, Nature.

[77]  Y. Song,et al.  Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma , 2009, European Respiratory Journal.

[78]  K. Tachibana,et al.  Ultrasound activation of TiO2 in melanoma tumors. , 2011, Journal of controlled release : official journal of the Controlled Release Society.

[79]  M. Morandi,et al.  Nanoparticle‐induced platelet aggregation and vascular thrombosis , 2005, British journal of pharmacology.

[80]  Stephen T Holgate,et al.  Exposure, uptake, distribution and toxicity of nanomaterials in humans. , 2010, Journal of biomedical nanotechnology.

[81]  Wenjun Zhao,et al.  Bioconjugated silica nanoparticles: Development and applications , 2008 .

[82]  Paul R. Lockman,et al.  Nanoparticle Surface Charges Alter Blood–Brain Barrier Integrity and Permeability , 2004, Journal of drug targeting.

[83]  Michihiro Nakamura,et al.  Nanomedicine for drug delivery and imaging: A promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles , 2007, International journal of cancer.

[84]  H. Krug,et al.  Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. , 2007, Toxicology letters.

[85]  Bahman Asgharian,et al.  Deposition of Ultrafine (NANO) Particles in the Human Lung , 2007, Inhalation toxicology.

[86]  Iseult Lynch,et al.  Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. , 2011, Journal of the American Chemical Society.

[87]  Minnamari Vippola,et al.  Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibres in human bronchial epithelial cells in vitro. , 2009, Toxicology letters.

[88]  Claus-Michael Lehr,et al.  Interaction of metal oxide nanoparticles with lung surfactant protein A. , 2011, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[89]  K. Donaldson,et al.  Impairment of alveolar macrophage phagocytosis by ultrafine particles. , 2001, Toxicology and applied pharmacology.

[90]  G. Oberdörster,et al.  Pulmonary retention of ultrafine and fine particles in rats. , 1992, American journal of respiratory cell and molecular biology.

[91]  J. Everitt,et al.  Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. , 2004, Toxicological sciences : an official journal of the Society of Toxicology.

[92]  A. Peters,et al.  Increased plasma viscosity during an air pollution episode: a link to mortality? , 1997, The Lancet.

[93]  J. Mauderly,et al.  Diesel Particulate Material Binds and Concentrates a Proinflammatory Cytokine That Causes Neutrophil Migration , 2004, Inhalation toxicology.

[94]  Anna A Shvedova,et al.  Nanomedicine and nanotoxicology: two sides of the same coin. , 2005, Nanomedicine : nanotechnology, biology, and medicine.

[95]  I. Zuhorn,et al.  Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. , 2004, The Biochemical journal.

[96]  Fate of inhaled particles after interaction with the lung surface. , 2006, Paediatric respiratory reviews.

[97]  W. Kreyling,et al.  Translocation of Inhaled Nanoparticles , 2011 .

[98]  M. Nieuwenhuijsen,et al.  Investigation of fine atmospheric particle surfaces and lung lining fluid interactions using XPS , 2001 .

[99]  Günter Oberdörster,et al.  Minute Translocation of Inhaled Ultrafine Insoluble Iridium Particles from Lung Epithelium to Extrapulmonary Tissues , 2002 .

[100]  M. Hande,et al.  Cytotoxicity and genotoxicity of silver nanoparticles in human cells. , 2009, ACS nano.

[101]  Osamu Yamamoto,et al.  In vivo effect of industrial titanium dioxide nanoparticles experimentally exposed to hairless rat skin , 2010, Nanotoxicology.

[102]  E. Fabian,et al.  Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rats , 2008, Archives of Toxicology.

[103]  D. Voelker,et al.  Surfactant protein A and surfactant protein D in health and disease. , 1998, American journal of physiology. Lung cellular and molecular physiology.

[104]  C. Bryant,et al.  Therapeutic Targeting of Toll-Like Receptors for Infectious and Inflammatory Diseases and Cancer , 2009, Pharmacological Reviews.

[105]  F. Shakib,et al.  Major House Dust Mite Allergens Dermatophagoides pteronyssinus 1 and Dermatophagoides farinae 1 Degrade and Inactivate Lung Surfactant Proteins A and D* , 2007, Journal of Biological Chemistry.

[106]  R. Scholz,et al.  Modeled environmental concentrations of engineered nanomaterials (TiO(2), ZnO, Ag, CNT, Fullerenes) for different regions. , 2009, Environmental science & technology.

[107]  C. Hewitt,et al.  Air pollution in the United Kingdom , 1997 .

[108]  V. Colvin The potential environmental impact of engineered nanomaterials , 2003, Nature Biotechnology.

[109]  Scott E. Evans,et al.  Augmented Lung Inflammation Protects against Influenza A Pneumonia , 2009, PloS one.

[110]  Bong Hyun Chung,et al.  Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. , 2009, Toxicology and applied pharmacology.

[111]  Jinhee Choi,et al.  Oxidative stress of CeO2 nanoparticles via p38-Nrf-2 signaling pathway in human bronchial epithelial cell, Beas-2B. , 2009, Toxicology letters.

[112]  Christian Mühlfeld,et al.  Particle and Fibre Toxicology Translocation of Particles and Inflammatory Responses after Exposure to Fine Particles and Nanoparticles in an Epithelial Airway Model , 2022 .

[113]  M. Lippmann,et al.  Urban PM2.5 Surface Chemistry and Interactions with Bronchoalveolar Lavage Fluid , 2004, Inhalation toxicology.

[114]  N. Alexis,et al.  In vivo particle uptake by airway macrophages in healthy volunteers. , 2006, American journal of respiratory cell and molecular biology.

[115]  Peter Gehr,et al.  Dendritic cells and macrophages form a transepithelial network against foreign particulate antigens. , 2007, American journal of respiratory cell and molecular biology.

[116]  Iseult Lynch,et al.  The evolution of the protein corona around nanoparticles: a test study. , 2011, ACS nano.

[117]  Vicki Stone,et al.  Carbon black nanoparticles induce type II epithelial cells to release chemotaxins for alveolar macrophages , 2005, Particle and Fibre Toxicology.

[118]  Matthias Ochs,et al.  Interactions of nanoparticles with pulmonary structures and cellular responses. , 2008, American journal of physiology. Lung cellular and molecular physiology.

[119]  Kenneth A. Dawson,et al.  Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts , 2008, Proceedings of the National Academy of Sciences.

[120]  Seth Pettie,et al.  Mind the gap , 2006, Nature Reviews Drug Discovery.

[121]  Lester Kobzik,et al.  Pulmonary exposure to particles during pregnancy causes increased neonatal asthma susceptibility. , 2008, American journal of respiratory cell and molecular biology.

[122]  Judit M Nagy,et al.  Proteomics, nanotechnology and molecular diagnostics , 2008, Proteomics.

[123]  S. Santra,et al.  Nanobioimaging and sensing of infectious diseases☆ , 2009, Advanced Drug Delivery Reviews.

[124]  原田 慶美 Ultrasound activation of TiO₂ in melanoma tumors , 2011 .

[125]  Benjamin Gilbert,et al.  Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. , 2008, ACS nano.

[126]  D. Grainger,et al.  Nanoparticles in the Lung , 2010 .

[127]  Eva Roblegg,et al.  Cytotoxicity of nanoparticles independent from oxidative stress. , 2009, The Journal of toxicological sciences.

[128]  H. Karlsson,et al.  Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. , 2008, Chemical research in toxicology.

[129]  G. Hansson,et al.  The immune system in atherosclerosis , 2011, Nature Immunology.

[130]  Ian D. Williams,et al.  Characterisation of airborne particles in London by computer-controlled scanning electron microscopy , 1999 .

[131]  M. Dobrovolskaia,et al.  Immunological properties of engineered nanomaterials , 2007, Nature Nanotechnology.

[132]  H. Bennhold [Human serum albumin]. , 1961, Bulletin der Schweizerischen Akademie der Medizinischen Wissenschaften.

[133]  Mohd Faisal,et al.  Iron Oxide Nanoparticles , 2011 .

[134]  Manuela Semmler-Behnke,et al.  The role of macrophages in the clearance of inhaled ultrafine titanium dioxide particles. , 2008, American journal of respiratory cell and molecular biology.

[135]  M. Bando,et al.  Evidence that exogenous substances can be phagocytized by alveolar epithelial cells and transported into blood capillaries , 2002, Cell and Tissue Research.

[136]  M. El-Sayed,et al.  Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. , 2010, Journal of the American Chemical Society.

[137]  Y. Korchev,et al.  Immortalization of human alveolar epithelial cells to investigate nanoparticle uptake. , 2008, American journal of respiratory cell and molecular biology.

[138]  H. Takano,et al.  Facilitating effects of nanoparticles/materials on sensitive immune-related lung disorders , 2011 .

[139]  David M. Brown,et al.  Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. , 2001, Toxicology and applied pharmacology.

[140]  Xiaohua Huang,et al.  Peptide-conjugated gold nanorods for nuclear targeting. , 2007, Bioconjugate chemistry.

[141]  Massimo Bovenzi,et al.  Human skin penetration of cobalt nanoparticles through intact and damaged skin. , 2009, Toxicology in vitro : an international journal published in association with BIBRA.

[142]  Massimo Bovenzi,et al.  Human skin penetration of silver nanoparticles through intact and damaged skin. , 2009, Toxicology.

[143]  Andrew D. Maynard,et al.  Don't define nanomaterials , 2011, Nature.

[144]  Istvan Toth,et al.  Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. , 2011, Nature nanotechnology.

[145]  K. Dawson,et al.  Inhibition of IAPP and IAPP(20-29) fibrillation by polymeric nanoparticles. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[146]  R. Dhand,et al.  Inhaled insulin: extending the horizons of inhalation therapy. , 2007, Respiratory care.

[147]  Kevin Kendall,et al.  Surfactant protein D (SP-D) alters cellular uptake of particles and nanoparticles , 2013, Nanotoxicology.

[148]  Robert B Sim,et al.  Collectins and innate immunity in the lung. , 2000, Microbes and infection.

[149]  Nianqiang Wu,et al.  Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. , 2010, Toxicology.

[150]  W. Aberer,et al.  A silver man , 2004, The Lancet.

[151]  J. Hogg,et al.  Particulate matter air pollution stimulates monocyte release from the bone marrow. , 2004, American journal of respiratory and critical care medicine.

[152]  W. MacNee,et al.  Particulate air pollution and acute health effects , 1995, The Lancet.

[153]  Wouter Fransman,et al.  Conceptual model for assessment of inhalation exposure to manufactured nanoparticles , 2011, Journal of Exposure Science and Environmental Epidemiology.

[154]  Alexandra Schneider,et al.  Ultrafine particles and platelet activation in patients with coronary heart disease – results from a prospective panel study , 2007, Particle and Fibre Toxicology.

[155]  U. Kompella,et al.  Human serum albumin nanoparticles for efficient delivery of Cu, Zn superoxide dismutase gene , 2007, Molecular vision.

[156]  P. M. Williams,et al.  Confounding experimental considerations in nanogenotoxicology. , 2009, Mutagenesis.

[157]  M. Kendall Fine airborne urban particles (PM2.5) sequester lung surfactant and amino acids from human lung lavage. , 2007, American journal of physiology. Lung cellular and molecular physiology.

[158]  A. Peters,et al.  Particulate Matter Air Pollution and Cardiovascular Disease: An Update to the Scientific Statement From the American Heart Association , 2010, Circulation.

[159]  Barry Lai,et al.  A high-performance nanobio photocatalyst for targeted brain cancer therapy. , 2009, Nano letters.

[160]  Andrew Williams,et al.  Environmental and Molecular Mutagenesis 52:425^439 (2011) Research Article Pulmonary Response to Surface-Coated Nanotitanium Dioxide Particles Includes Induction of Acute Phase Response Genes, Inflammatory Cascades, and Changes in MicroRNAs: A Toxicogenom , 2022 .

[161]  Lang Tran,et al.  Evaluating the uptake and intracellular fate of polystyrene nanoparticles by primary and hepatocyte cell lines in vitro. , 2010, Toxicology and applied pharmacology.

[162]  S Moein Moghimi,et al.  Distinct polymer architecture mediates switching of complement activation pathways at the nanosphere-serum interface: implications for stealth nanoparticle engineering. , 2010, ACS nano.

[163]  W. Kreyling,et al.  TRANSLOCATION OF ULTRAFINE INSOLUBLE IRIDIUM PARTICLES FROM LUNG EPITHELIUM TO EXTRAPULMONARY ORGANS IS SIZE DEPENDENT BUT VERY LOW , 2002, Journal of toxicology and environmental health. Part A.

[164]  Malcolm L. H. Green,et al.  Binding of pulmonary surfactant proteins to carbon nanotubes; potential for damage to lung immune defense mechanisms , 2007 .

[165]  J. Langberg,et al.  Ambient Air Pollution and Cardiac Arrhythmias in Patients With Implantable Defibrillators , 2007, Epidemiology.

[166]  Kostas Kostarelos,et al.  Liposome-nanoparticle hybrids for multimodal diagnostic and therapeutic applications. , 2007, Nanomedicine.

[167]  J. Hoskins,et al.  The health effects of chrysotile: current perspective based upon recent data. , 2006, Regulatory toxicology and pharmacology : RTP.

[168]  S. Rajagopalan,et al.  Long-term exposure to ambient fine particulate pollution induces insulin resistance and mitochondrial alteration in adipose tissue. , 2011, Toxicological sciences : an official journal of the Society of Toxicology.

[169]  David M. Brown,et al.  Proinflammogenic Effects of Low-Toxicity and Metal Nanoparticles In Vivo and In Vitro: Highlighting the Role of Particle Surface Area and Surface Reactivity , 2007, Inhalation toxicology.

[170]  A. Nel,et al.  Oxidative stress and asthma: proteome analysis of chitinase-like proteins and FIZZ1 in lung tissue and bronchoalveolar lavage fluid. , 2009, Journal of proteome research.

[171]  John A. Curtis,et al.  Nanotechnology and Nanotoxicology , 2006, Toxicological reviews.

[172]  D. Huber,et al.  Synthesis, properties, and applications of iron nanoparticles. , 2005, Small.

[173]  T. Xia,et al.  Toxic Potential of Materials at the Nanolevel , 2006, Science.

[174]  Jürgen Pauluhn,et al.  Subchronic 13-week inhalation exposure of rats to multiwalled carbon nanotubes: toxic effects are determined by density of agglomerate structures, not fibrillar structures. , 2010, Toxicological sciences : an official journal of the Society of Toxicology.

[175]  G. Gaiha,et al.  Surfactant Protein A Binds to HIV and Inhibits Direct Infection of CD4+ Cells, but Enhances Dendritic Cell-Mediated Viral Transfer1 , 2008, The Journal of Immunology.

[176]  G. Ostojic,et al.  Carbon Nanotubes , 2010, Methods in Molecular Biology.

[177]  J. Kos,et al.  Procoagulant properties of bare and highly PEGylated vinyl-modified silica nanoparticles. , 2010, Nanomedicine.

[178]  Brenton L. Scott,et al.  Stimulation of lung innate immunity protects against lethal pneumococcal pneumonia in mice. , 2008, American journal of respiratory and critical care medicine.

[179]  Peter Wick,et al.  Nanotoxicology: an interdisciplinary challenge. , 2011, Angewandte Chemie.

[180]  Huiyuan Gao,et al.  Nanoparticle realgar powders induce apoptosis in u937 cells through caspase mapk and mitochondrial pathways , 2007, Archives of pharmacal research.

[181]  Jeffrey W Card,et al.  Pulmonary applications and toxicity of engineered nanoparticles. , 2008, American journal of physiology. Lung cellular and molecular physiology.

[182]  Evangelia Vlachou,et al.  The safety of nanocrystalline silver dressings on burns: a study of systemic silver absorption. , 2007, Burns : journal of the International Society for Burn Injuries.

[183]  Saji George,et al.  Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. , 2009, ACS nano.

[184]  M. Nieuwenhuijsen,et al.  The spatial and temporal variation of particulate matter within the home , 2000, Journal of Exposure Analysis and Environmental Epidemiology.

[185]  Manuela Semmler-Behnke,et al.  Biodistribution of 1.4- and 18-nm gold particles in rats. , 2008, Small.

[186]  M. Johnston,et al.  Targeting colloidal particulates to thoracic lymph nodes. , 2006, Lung cancer.

[187]  J. Wright Immunoregulatory functions of surfactant proteins , 2005, Nature Reviews Immunology.

[188]  Nicklas Raun Jacobsen,et al.  Pulmonary exposure to carbon black by inhalation or instillation in pregnant mice: Effects on liver DNA strand breaks in dams and offspring , 2012, Nanotoxicology.

[189]  Peter Wick,et al.  Environmental and health effects of nanomaterials in nanotextiles and façade coatings. , 2011, Environment international.

[190]  Molecular Adsorption at Particle Surfaces: A PM Toxicity Mediation Mechanism , 2004, Inhalation toxicology.

[191]  Kevin Kendall,et al.  Particle and nanoparticle interactions with fibrinogen: the importance of aggregation in nanotoxicology , 2011, Nanotoxicology.