Fuzzy Number Intuitionistic Fuzzy Arithmetic Aggregation Operators

A fuzzy number intuitionistic fuzzy set (FNIFS) is a generalization of intuitionistic fuzzy set. The fundamental characteristic of FNIFS is that the values of its membership function and non-membership function are trigonometric fuzzy numbers rather than exact numbers. In this paper, we define some operational laws of fuzzy number intuitionistic fuzzy numbers, and, based on these operational laws, develop some new arithmetic aggregation operators, such as the fuzzy number intuitionistic fuzzy weighted averaging (FIFWA) operator, the fuzzy number intuitionistic fuzzy ordered weighted averaging (FIFOWA) operator and the fuzzy number intuitionistic fuzzy hybrid aggregation (FIFHA) operator for aggregating fuzzy number intuitionistic fuzzy information. Furthermore, we give an application of the FIFHA operator to multiple attribute decision making based on fuzzy number intuitionistic fuzzy information. Finally, an illustrative example is given to verify the developed approach.

[1]  J. Harsanyi Cardinal Welfare, Individualistic Ethics, and Interpersonal Comparisons of Utility , 1955 .

[2]  Krassimir T. Atanassov,et al.  Intuitionistic fuzzy sets , 1986 .

[3]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[4]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decision-making , 1988 .

[5]  K. Atanassov More on intuitionistic fuzzy sets , 1989 .

[6]  Mao-Jiun J. Wang,et al.  Ranking fuzzy numbers with integral value , 1992 .

[7]  W.-L. Gau,et al.  Vague sets , 1993, IEEE Trans. Syst. Man Cybern..

[8]  Shyi-Ming Chen,et al.  Handling multicriteria fuzzy decision-making problems based on vague set theory , 1994 .

[9]  K. Atanassov Operators over interval valued intuitionistic fuzzy sets , 1994 .

[10]  Humberto Bustince,et al.  Vague sets are intuitionistic fuzzy sets , 1996, Fuzzy Sets Syst..

[11]  J. Kacprzyk,et al.  The Ordered Weighted Averaging Operators: Theory and Applications , 1997 .

[12]  V. Torra The weighted OWA operator , 1997, International Journal of Intelligent Systems.

[13]  Kweku-Muata Osei-Bryson,et al.  Eliciting and mapping qualitative preferences to numeric rankings in group decision making , 1999, Eur. J. Oper. Res..

[14]  Dug Hun Hong,et al.  Multicriteria fuzzy decision-making problems based on vague set theory , 2000, Fuzzy Sets Syst..

[15]  Z. S. Xu,et al.  An overview of operators for aggregating information , 2003, Int. J. Intell. Syst..

[16]  Liu Hua-wen,et al.  Vague Set Methods of Multicriteria Fuzzy Decision Making , 2004 .

[17]  Zeshui Xu,et al.  An overview of methods for determining OWA weights , 2005, Int. J. Intell. Syst..

[18]  Zeshui Xu,et al.  Some geometric aggregation operators based on intuitionistic fuzzy sets , 2006, Int. J. Gen. Syst..

[19]  Zeshui Xu,et al.  Intuitionistic Fuzzy Aggregation Operators , 2007, IEEE Transactions on Fuzzy Systems.

[20]  Jian Jhen Chen,et al.  Approach to Group Decision Making Based on Interval-Valued Intuitionistic Judgment Matrices , 2007 .

[21]  Z. Xu,et al.  Methods for aggregating interval-valued intuitionistic fuzzy information and their application to decision making , 2007 .

[22]  Zeshui Xu,et al.  On Geometric Aggregation over Interval-Valued Intuitionistic Fuzzy Information , 2007, Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007).

[23]  Yuan Xue-hai,et al.  Fuzzy Number Intuitionistic Fuzzy Set , 2007 .

[24]  Wang Xin-fan Fuzzy number intuitionistic fuzzy geometric aggregation operators and their application to decision making , 2008 .