Chapter 20 – Validation of Tractography

This chapter leads the reader through the scaffold of validation studies that have been carried out with the aim of supporting tractography. We start with software and physical phantoms, which are user-definable and easy to manipulate, but are gross approximations of the in vivo brain. We then discuss simple biological models, in which complexity is increased at the expense of decreased control of underlying architecture and ground truth. Comparing tractography with invasive tract-tracing techniques returns some degree of ground-truth knowledge, allowing testing in the in vivo brain. However, the invasiveness of dissection studies and the potential toxicity of classical histological and MR-visible tracers, means these methods can only be used in animals. It is humans that are ultimately the subjects on which fiber tracking must be validated. The use of known anatomy and circumstantial validation, such as functional imaging and lesion studies, is an integral part of the validation process.

[1]  M. Solaiyappan,et al.  In vivo three‐dimensional reconstruction of rat brain axonal projections by diffusion tensor imaging , 1999, Magnetic resonance in medicine.

[2]  Karla L. Miller,et al.  Diffusion tractography of post-mortem human brains: Optimization and comparison of spin echo and steady-state free precession techniques , 2012, NeuroImage.

[3]  K. Hasan,et al.  Diffusion tensor imaging of in vivo and excised rat spinal cord at 7 T with an icosahedral encoding scheme , 2005, Magnetic resonance in medicine.

[4]  Gareth J. Barker,et al.  From diffusion tractography to quantitative white matter tract measures: a reproducibility study , 2003, NeuroImage.

[5]  Desmond J. Higham,et al.  Connectivity-based parcellation of human cortex using diffusion MRI: Establishing reproducibility, validity and observer independence in BA 44/45 and SMA/pre-SMA , 2007, NeuroImage.

[6]  Osamu Abe,et al.  Flexible ex vivo phantoms for validation of diffusion tensor tractography on a clinical scanner , 2006, Radiation Medicine.

[7]  Hamied A. Haroon,et al.  Combining tractography and coherence measures to identify connectivity within a neural network for reading. , 2008 .

[8]  R. Passingham,et al.  Initial Demonstration of in Vivo Tracing of Axonal Projections in the Macaque Brain and Comparison with the Human Brain Using Diffusion Tensor Imaging and Fast Marching Tractography , 2002, NeuroImage.

[9]  Bin Chen,et al.  Diffusion tensor imaging fiber tracking with local tissue property sensitivity: phantom and in vivo validation. , 2008, Magnetic resonance imaging.

[10]  Heidi Johansen-Berg,et al.  Probabilistic tractography of the optic radiations—An automated method and anatomical validation , 2010, NeuroImage.

[11]  Timothy Edward John Behrens,et al.  Triangulating a Cognitive Control Network Using Diffusion-Weighted Magnetic Resonance Imaging (MRI) and Functional MRI , 2007, The Journal of Neuroscience.

[12]  P. Callaghan Principles of Nuclear Magnetic Resonance Microscopy , 1991 .

[13]  Abbas F. Sadikot,et al.  Flow-based fiber tracking with diffusion tensor and q-ball data: Validation and comparison to principal diffusion direction techniques , 2005, NeuroImage.

[14]  Andrew L. Alexander,et al.  An error analysis of white matter tractography methods: synthetic diffusion tensor field simulations , 2003, NeuroImage.

[15]  S C Williams,et al.  Non‐invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI , 1999, Magnetic resonance in medicine.

[16]  W. Baaré,et al.  An ex vivo imaging pipeline for producing high‐quality and high‐resolution diffusion‐weighted imaging datasets , 2011, Human brain mapping.

[17]  Kenji Ino,et al.  Visualization of the frontotemporal language fibers by tractography combined with functional magnetic resonance imaging and magnetoencephalography. , 2007, Journal of neurosurgery.

[18]  Katrin Amunts,et al.  White matter fiber tracts of the human brain: Three-dimensional mapping at microscopic resolution, topography and intersubject variability , 2006, NeuroImage.

[19]  Maxime Descoteaux,et al.  Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom , 2011, NeuroImage.

[20]  Michael A. King,et al.  Diffusion tensor microscopy in human nervous tissue with quantitative correlation based on direct histological comparison , 2011, NeuroImage.

[21]  Peter Boesiger,et al.  Reconstruction of the human visual system based on DTI fiber tracking , 2007, Journal of magnetic resonance imaging : JMRI.

[22]  Ching Yao,et al.  Validation of diffusion spectrum magnetic resonance imaging with manganese-enhanced rat optic tracts and ex vivo phantoms , 2003, NeuroImage.

[23]  L. Frank Characterization of anisotropy in high angular resolution diffusion‐weighted MRI , 2002, Magnetic resonance in medicine.

[24]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[25]  Alan Connelly,et al.  Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution , 2004, NeuroImage.

[26]  V. Wedeen,et al.  Mapping fiber orientation spectra in cerebral white matter with Fourier-transform diffusion MRI , 2000 .

[27]  Nikos K. Logothetis,et al.  Comparing Corticocortical Interconnection Information from Tracer Studies and Probabilistic Tractography in the Postmortem Macaque Brain , 2008 .

[28]  E. Formisano,et al.  Phase coupling in a cerebro-cerebellar network at 8-13 Hz during reading. , 2007, Cerebral cortex.

[29]  Karl J. Friston,et al.  Non-invasive mapping of corticofugal fibres from multiple motor areas--relevance to stroke recovery. , 2006, Brain : a journal of neurology.

[30]  T E Conturo,et al.  Diffusion tensor fiber tracking of human brain connectivity: aquisition methods, reliability analysis and biological results , 2002, NMR in biomedicine.

[31]  P. V. van Zijl,et al.  Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging , 1999, Annals of neurology.

[32]  Hui Mao,et al.  Diffusion Tensor and Functional Magnetic Resonance Imaging of Diffuse Axonal Injury and Resulting Language Impairment , 2007, Journal of neuroimaging : official journal of the American Society of Neuroimaging.

[33]  Anna Devor,et al.  In vivo tracing of major rat brain pathways using manganese-enhanced magnetic resonance imaging and three-dimensional digital atlasing , 2003, NeuroImage.

[34]  Nikos K. Logothetis,et al.  Validation of tractography against in vivo tracing in the macaque visual system: effect of distance correction , 2012 .

[35]  Mark W. Woolrich,et al.  Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? , 2007, NeuroImage.

[36]  Rachid Deriche,et al.  VALIDATION AND COMPARISON OF ANALYTICAL Q-BALL IMAGING METHODS , 2007, 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[37]  J. Mangin,et al.  New diffusion phantoms dedicated to the study and validation of high‐angular‐resolution diffusion imaging (HARDI) models , 2008, Magnetic resonance in medicine.

[38]  Gareth J. Barker,et al.  Estimating distributed anatomical connectivity using fast marching methods and diffusion tensor imaging , 2002, IEEE Transactions on Medical Imaging.

[39]  M. Kraut,et al.  Comparison of weakness progression in inclusion body myositis during treatment with methotrexate or placebo , 2002, Annals of neurology.

[40]  Geoffrey J M Parker,et al.  A framework for a streamline‐based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements , 2003, Journal of magnetic resonance imaging : JMRI.

[41]  Timothy Edward John Behrens,et al.  Functional-anatomical validation and individual variation of diffusion tractography-based segmentation of the human thalamus. , 2005, Cerebral cortex.

[42]  D. LeBihan,et al.  Validation of q-ball imaging with a diffusion fibre-crossing phantom on a clinical scanner , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[43]  Timothy Edward John Behrens,et al.  Between session reproducibility and between subject variability of diffusion MR and tractography measures , 2006, NeuroImage.

[44]  Carl-Fredrik Westin,et al.  Processing and visualization for diffusion tensor MRI , 2002, Medical Image Anal..

[45]  Timothy E. J. Behrens,et al.  The evolution of the arcuate fasciculus revealed with comparative DTI , 2008, Nature Neuroscience.

[46]  Matthew A. Lambon Ralph,et al.  Lateralization of ventral and dorsal auditory-language pathways in the human brain , 2005, NeuroImage.

[47]  Karl J. Friston,et al.  Dissociating Reading Processes on the Basis of Neuronal Interactions , 2005, Journal of Cognitive Neuroscience.

[48]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[49]  Derek K. Jones,et al.  Virtual in Vivo Interactive Dissection of White Matter Fasciculi in the Human Brain , 2002, NeuroImage.

[50]  A. Dale,et al.  Quantitative Histological Validation of Diffusion MRI Fiber Orientation Distributions in the Rat Brain , 2010, PloS one.

[51]  A. Anderson,et al.  Validation of diffusion tensor MRI‐based muscle fiber tracking , 2002, Magnetic resonance in medicine.

[52]  D. Parker,et al.  Analysis of partial volume effects in diffusion‐tensor MRI , 2001, Magnetic resonance in medicine.

[53]  L. M. Auer,et al.  Fiber Tracking from DTI Using Linear State Space Models: Detectability of the Pyramidal Tract , 2002, NeuroImage.

[54]  D G Gadian,et al.  Limitations and requirements of diffusion tensor fiber tracking: An assessment using simulations , 2002, Magnetic resonance in medicine.

[55]  Ezequiel Farrher,et al.  Novel multisection design of anisotropic diffusion phantoms. , 2012, Magnetic resonance imaging.

[56]  Thomas R. Barrick,et al.  Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection , 2008, NeuroImage.

[57]  V. Wedeen,et al.  Diffusion MRI of Complex Neural Architecture , 2003, Neuron.

[58]  R. Goebel,et al.  Ground truth hardware phantoms for validation of diffusion‐weighted MRI applications , 2010, Journal of magnetic resonance imaging : JMRI.

[59]  Michael A. King,et al.  Cellular-level diffusion tensor microscopy and fiber tracking in mammalian nervous tissue with direct histological correlation , 2010, NeuroImage.

[60]  Susumu Mori,et al.  Magnetic Resonance Diffusion Tensor Microimaging Reveals a Role for Bcl-x in Brain Development and Homeostasis , 2005, The Journal of Neuroscience.

[61]  Rainer Goebel,et al.  High-resolution diffusion tensor imaging and tractography of the human optic chiasm at 9.4 T , 2008, NeuroImage.

[62]  Timothy Edward John Behrens,et al.  Quantitative Investigation of Connections of the Prefrontal Cortex in the Human and Macaque using Probabilistic Diffusion Tractography , 2005, The Journal of Neuroscience.

[63]  O. Sporns,et al.  Mapping the Structural Core of Human Cerebral Cortex , 2008, PLoS biology.

[64]  Riitta Hari,et al.  Diffusion tensor imaging and tractography of distal peripheral nerves at 3 T , 2005, Clinical Neurophysiology.

[65]  J. S. Duncan,et al.  MR tractography predicts visual field defects following temporal lobe resection , 2005, Neurology.

[66]  Yusuke Murayama,et al.  Tracing neural circuits in vivo with Mn-enhanced MRI. , 2006, Magnetic resonance imaging.

[67]  D. Rye Tracking neural pathways with MRI , 1999, Trends in Neurosciences.

[68]  A. Vercelli,et al.  Recent techniques for tracing pathways in the central nervous system of developing and adult mammals , 2000, Brain Research Bulletin.

[69]  M. Young,et al.  Advanced database methodology for the Collation of Connectivity data on the Macaque brain (CoCoMac). , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[70]  A. Cotten,et al.  In vivo MR tractography of thigh muscles using diffusion imaging: initial results , 2007, European Radiology.

[71]  N. Logothetis,et al.  Magnetic Resonance Imaging of Neuronal Connections in the Macaque Monkey , 2001, Neuron.

[72]  M. G. Honig,et al.  Dil and DiO: versatile fluorescent dyes for neuronal labelling and pathway tracing , 1989, Trends in Neurosciences.

[73]  M R Drost,et al.  Diffusion tensor imaging in biomechanical studies of skeletal muscle function , 1999, Journal of anatomy.

[74]  J. Lanciego,et al.  Current concepts in neuroanatomical tracing , 2000, Progress in Neurobiology.

[75]  John S. Duncan,et al.  Combined functional MRI and tractography to demonstrate the connectivity of the human primary motor cortex in vivo , 2003, NeuroImage.

[76]  Ching-Po Lin,et al.  Validation of Diffusion Tensor Magnetic Resonance Axonal Fiber Imaging with Registered Manganese-Enhanced Optic Tracts , 2001, NeuroImage.

[77]  Maarten R. Drost,et al.  Determination of muscle fibre orientation using Diffusion-Weighted MRI. , 1996 .

[78]  Carl-Fredrik Westin,et al.  Comparison of fiber tracts derived from in-vivo DTI tractography with 3D histological neural tract tracer reconstruction on a macaque brain , 2007, NeuroImage.

[79]  Vince D. Calhoun,et al.  Measuring brain connectivity: Diffusion tensor imaging validates resting state temporal correlations , 2008, NeuroImage.

[80]  Olaf Sporns,et al.  Quantitative Validation of MR Tractography Using the CoCoMac Database , 2008 .

[81]  P. Basser,et al.  In vivo fiber tractography using DT‐MRI data , 2000, Magnetic resonance in medicine.

[82]  John S. Duncan,et al.  Hemispheric asymmetries in language-related pathways: A combined functional MRI and tractography study , 2006, NeuroImage.

[83]  Thomas Benner,et al.  Three dimensional myoarchitecture of the human tongue determined in vivo by diffusion tensor imaging with tractography , 2007, Journal of magnetic resonance imaging : JMRI.

[84]  A. Reiner,et al.  Pathway tracing using biotinylated dextran amines , 2000, Journal of Neuroscience Methods.

[85]  Talma Hendler,et al.  Characterization of displaced white matter by brain tumors using combined DTI and fMRI , 2006, NeuroImage.

[86]  Mark J. Lowe,et al.  An objective method for regularization of fiber orientation distributions derived from diffusion-weighted MRI , 2007, NeuroImage.

[87]  Lester Melie-García,et al.  Characterizing brain anatomical connections using diffusion weighted MRI and graph theory , 2007, NeuroImage.

[88]  N. Makris,et al.  High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity , 2002, Magnetic resonance in medicine.

[89]  Timothy Edward John Behrens,et al.  Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging , 2003, Nature Neuroscience.

[90]  Daniel C Alexander,et al.  Multiple‐Fiber Reconstruction Algorithms for Diffusion MRI , 2005, Annals of the New York Academy of Sciences.

[91]  Afonso C. Silva,et al.  In vivo neuronal tract tracing using manganese‐enhanced magnetic resonance imaging , 1998, Magnetic resonance in medicine.

[92]  P. Hagmann,et al.  Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[93]  Stephen J. Eichhorn,et al.  Jet deposition in near-field electrospinning of patterned polycaprolactone and sugar-polycaprolactone core–shell fibres , 2011 .

[94]  G. Pearlson,et al.  Diffusion Tensor Imaging and Axonal Tracking in the Human Brainstem , 2001, NeuroImage.

[95]  Anneriet M Heemskerk,et al.  Diffusion Tensor MRI Assessment of Skeletal Muscle Architecture. , 2007, Current medical imaging reviews.

[96]  Timothy Edward John Behrens,et al.  Anatomical and Functional Connectivity of Cytoarchitectonic Areas within the Human Parietal Operculum , 2010, The Journal of Neuroscience.

[97]  Osamu Abe,et al.  Topography of the Human Corpus Callosum Using Diffusion Tensor Tractography , 2004, Journal of computer assisted tomography.

[98]  Peter Savadjiev,et al.  3D curve inference for diffusion MRI regularization and fibre tractography , 2006, Medical Image Anal..

[99]  Jacob Jelsing,et al.  Validation of in vitro probabilistic tractography , 2007, NeuroImage.

[100]  Peter Boesiger,et al.  Combining fMRI and DTI: A framework for exploring the limits of fMRI-guided DTI fiber tracking and for verifying DTI-based fiber tractography results , 2008, NeuroImage.

[101]  Thomas Benner,et al.  Three-dimensional myoarchitecture of the bovine tongue demonstrated by diffusion spectrum magnetic resonance imaging with tractography. , 2006, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[102]  Anna Vilanova,et al.  Determination of mouse skeletal muscle architecture using three‐dimensional diffusion tensor imaging , 2005, Magnetic resonance in medicine.

[103]  Rik Van de Walle,et al.  A flexible hardware phantom for validation of diffusion imaging sequences , 2005 .

[104]  M. Raichle,et al.  Tracking neuronal fiber pathways in the living human brain. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[105]  Wim Vanduffel,et al.  Q-ball imaging of macaque white matter architecture , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[106]  Kalvis M. Jansons,et al.  Persistent angular structure: new insights from diffusion magnetic resonance imaging data , 2003 .

[107]  J Sijbers,et al.  Mathematical framework for simulating diffusion tensor MR neural fiber bundles , 2005, Magnetic resonance in medicine.

[108]  Nathan Yanasak,et al.  Use of capillaries in the construction of an MRI phantom for the assessment of diffusion tensor imaging: demonstration of performance. , 2006, Magnetic resonance imaging.

[109]  Nikos K. Logothetis,et al.  High resolution tractography in macaque visual system: validation against in vivo tracing , 2010 .

[110]  Geoff J. M. Parker,et al.  Characterizing function–structure relationships in the human visual system with functional MRI and diffusion tensor imaging , 2004, NeuroImage.

[111]  R Mark Henkelman,et al.  Orientational diffusion reflects fiber structure within a voxel , 2002, Magnetic resonance in medicine.

[112]  Alan Connelly,et al.  A software tool to generate simulated white matter structures for the assessment of fibre-tracking algorithms , 2009, NeuroImage.