Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond

A major cause of the paucity of new starting points for drug discovery is the lack of interaction between academia and industry. Much of the global resource in biology is present in universities, whereas the focus of medicinal chemistry is still largely within industry. Open source drug discovery, with sharing of information, is clearly a first step towards overcoming this gap. But the interface could especially be bridged through a scale-up of open sharing of physical compounds, which would accelerate the finding of new starting points for drug discovery. The Medicines for Malaria Venture Malaria Box is a collection of over 400 compounds representing families of structures identified in phenotypic screens of pharmaceutical and academic libraries against the Plasmodium falciparum malaria parasite. The set has now been distributed to almost 200 research groups globally in the last two years, with the only stipulation that information from the screens is deposited in the public domain. This paper reports for the first time on 236 screens that have been carried out against the Malaria Box and compares these results with 55 assays that were previously published, in a format that allows a meta-analysis of the combined dataset. The combined biochemical and cellular assays presented here suggest mechanisms of action for 135 (34%) of the compounds active in killing multiple life-cycle stages of the malaria parasite, including asexual blood, liver, gametocyte, gametes and insect ookinete stages. In addition, many compounds demonstrated activity against other pathogens, showing hits in assays with 16 protozoa, 7 helminths, 9 bacterial and mycobacterial species, the dengue fever mosquito vector, and the NCI60 human cancer cell line panel of 60 human tumor cell lines. Toxicological, pharmacokinetic and metabolic properties were collected on all the compounds, assisting in the selection of the most promising candidates for murine proof-of-concept experiments and medicinal chemistry programs. The data for all of these assays are presented and analyzed to show how outstanding leads for many indications can be selected. These results reveal the immense potential for translating the dispersed expertise in biological assays involving human pathogens into drug discovery starting points, by providing open access to new families of molecules, and emphasize how a small additional investment made to help acquire and distribute compounds, and sharing the data, can catalyze drug discovery for dozens of different indications. Another lesson is that when multiple screens from different groups are run on the same library, results can be integrated quickly to select the most valuable starting points for subsequent medicinal chemistry efforts.

Manuel Llinás | George Papadatos | Sundari Suresh | Ulrich Schlecht | Ajit Jadhav | Jordi Mestres | S Joshua Swamidass | Rajarshi Guha | Silvia Parapini | Donatella Taramelli | William Sullivan | S. Joshua Swamidass | Takaaki Horii | Jürgen Bosch | Hoan Vu | Joachim Müller | Simon Townson | Brian M. Suzuki | Tyler B. Hughes | Marian Brennan | Gregory M. Goldgof | Edgar Vigil | Yo Suzuki | Gregory J. Crowther | Sally-Ann Poulsen | Ronald J Quinn | Tyler B Hughes | Jennifer Keiser | Joseph L DeRisi | Sunyoung Kim | Anjo Theron | Dalu Mancama | Paul A Willis | Michael Delves | Kiaran Kirk | Stephan Meister | Andrea Ruecker | Michael T Ferdig | Sheena McGowan | Carl Nathan | Ikuo Igarashi | R Kiplin Guy | Jeremy Burrows | Rob Hooft van Huijsduijnen | Didier Leroy | Andrew Hemphill | Timothy Wells | Celia Quevedo | Arantza Muriana | Nil Gural | Vida Ahyong | Jose Brea | Sangeeta Bhatia | Todd Golub | Imran Ullah | E. Winzeler | T. Golub | S. Meister | J. Derisi | Yo Suzuki | Choukri Ben Mamoun | John P. Moore | J. Keiser | J. Mestres | S. Baker | S. Joshua Joshua Swamidass | A. Jadhav | D. Sullivan | U. Schlecht | Sundari Suresh | M. Loza | J. Brea | S. Bhatia | R. Guha | M. Llinás | S. Parapini | D. Taramelli | K. Kirk | A. Kaiser | Adele M. Lehane | D. Plouffe | D. Kyle | D. Fidock | R. Sinden | T. Ketas | F. Gamo | D. Mancama | B. Nare | M. Akabas | G. Papadatos | R. Guy | S. Avery | G. Camarda | M. Ferdig | W. Sullivan | M. Delves | C. Nathan | L. T. Jensen | A. Wilks | S. McGowan | S. Landfear | D. Leroy | R. Misra | C. Caffrey | L. Maes | Joachim Müller | D. Carter | T. Soldati | I. Igarashi | M. Brennan | A. Chubb | R. Jiang | Dennis A. Smith | Sunyoung Kim | V. Avery | W. V. Van Voorhis | C. Quevedo | G. Panic | L. Ayong | T. Horii | V. Ahyong | A. Spitzmüller | K. Patra | R. Quinn | Imran Ullah | K. Andrews | C. Huston | Alan Y. Du | N. Yokoyama | A. Tripathi | A. Alzualde | Aintzane Alday | A. Muriana | K. Ojo | J. Burrows | R. Hooft van Huijsduijnen | T. Wells | J. Vinetz | I. Lucet | Q. Bickle | Seunghyun Moon | I. Florent | F. Boyom | A. Hemphill | Benoît Laleu | Louis Maes | Wesley C Van Voorhis | David A Fidock | Dennis A Smith | Sandra March | Ani Galstian | Fengwu Li | Choukri Ben Mamoun | David Thomas | J. Adams | S. Kicka | Valentin Trofimov | W. A. Guiguemde | Sandra Duffy | Ken Chih-Chien Cheng | Vicky M Avery | Seunghyun Moon | Sukjun Lee | Lawrence Ayong | Francisco Javier Gamo | P. Alano | F. Silvestrini | John P Moore | S. Gokool | Myles H Akabas | Conor R Caffrey | David Thomas | Gregory M Goldgof | Elizabeth A Winzeler | Stephen Baker | Thierry Soldati | Andreas Spitzmüller | Liqiong Liu | C. Rice | N. Gural' | Gregory J Crowther | J. Bosch | John H Adams | Sandra Duffy | C. Vallieres | Lotfi Bounaadja | Luke Mercer | Sarah D'Alessandro | Francesco Silvestrini | Yolanda Corbett | Pietro Alano | Anthony Chubb | Simon V Avery | Paul Horrocks | S. Poulsen | Nada Abla | Ben Gold | Dennis E Kyle | Abhai K Tripathi | David J Sullivan | Robert P. St. Onge | Katherine T Andrews | Joseph M Vinetz | David M. Plouffe | Raj N Misra | P. Willis | L. Boucher | Fengwu Li | Maurice A. Itoe | W Armand Guiguemde | Liqiong Liu | Isabelle Lucet | Bakela Nare | Thomas Ketas | Quentin Bickle | Benjamin Blasco | Jasmeet Samra | Manuela Carrasquilla | Audrey Burton | K. Tonissen | Ngoc Pham | Anupam Pradhan | S. D’Alessandro | Noemi Cowan | N. Pham | Kayode K Ojo | Lotfi Bounaadja | Leonardo Lucantoni | Rays H Y Jiang | Adele M Lehane | Robert Sinden | Isabelle Florent | B. Suzuki | M. Lafuente | Ainhoa Alzualde | H. Vu | G. Goldgof | Naoaki Yokoyama | Melanie Wree | Kailash Patra | Aristea Lubar | Dee Carter | Diana Ortiz | Scott Landfear | Thomas Spangenberg | Roberto Adelfio | Aintzane Alday | Yesmalie Alemán Resto | Aishah Alsibaee | Mark Baker | Tana Bowling | Lauren E Boucher | Fabrice F Boyom | Grazia Camarda | Maria Belen Cassera | Ken Chih-Chien Cheng | Worathad Chindaudomsate | Beatrice L Colon | Daisy D Colón-López | Noemi Cowan | Na Le Dang | Alan Y Du | Shimaa Abd El-Salam El-Sayed | José A Fernández Robledo | Patrick V T Fokou | Suzanne Gokool | Michael A E Hansen | Kirsten K Hanson | Christopher Huston | Katrin Ingram-Sieber | Maurice A Itoe | Amornrat Naranuntarat Jensen | Laran T Jensen | Annette Kaiser | Sebastien Kicka | Vidya P Kumar | Maria Jose Lafuente | Nathan Lee | David Little | Maria I Loza | Nuha R Mansour | Iset Medina Vera | Luke Mercer | Alvine N Mfopa | Francielly Morais Rodrigues da Costa | Stephen Nakazawa Hewitt | Nathalie Narraidoo | Sujeevi Nawaratna | Gordana Panic | Sarah Prats | David M Plouffe | Christopher A Rice | Mohamed Abdo Rizk | Robert St Onge | Rafaela Salgado Ferreira | Natalie G Robinett | Marjorie Schmitt | Filipe Silva Villela | Serge Maximilian Stamm | Brian M Suzuki | Lauve R Y Tchokouaha | Kathryn F Tonissen | Valentin Trofimov | Kenneth O Udenze | Cindy Vallieres | Phat Voong Vinh | Nao-Aki Watanabe | Kate Weatherby | Pamela M White | Andrew F Wilks | Edward Wojcik | Wesley Wu | Paul H A Zollo | Nada Abla | Anupam Pradhan | S. Townson | L. Lucantoni | E. Wojcik | Sukjun Lee | P. Horrocks | B. Laleu | Kenneth O. Udenze | Nathalie Narraidoo | Phat Voong Vinh | S. March | K. Hanson | K. Weatherby | Sujeevi Nawaratna | A. Ruecker | Tana Bowling | B. Gold | David Little | A. Theron | Wesley Wu | D. Ortiz | B. Colon | Y. Corbett | V. Kumar | L. Tchokouaha | Edgar Vigil | M. Schmitt | Daisy D. Colón-López | José A. Fernández Robledo | T. Spangenberg | R. Adelfio | Aishah Alsibaee | M. Baker | Audrey Burton | Manuela Carrasquilla | Worathad Chindaudomsate | P. Fokou | A. Galstian | M. E. Hansen | Katrin Ingram-Sieber | Nathan Lee | Aristea A. Lubar | A. Mfopa | S. Prats | J. Samra | Natalie G. Robinett | Paul H. A. Zollo | Benjamin Blasco | Stephen Nakazawa Hewitt | Melanie Wree | Nao-aki Watanabe | Yesmalie Alemán Resto | Rafaela Salgado Ferreira | Francielly Morais Rodrigues da Costa | M. Belen Cassera | Na Le Dang | Shimaa Abd El-Salam El-Sayed | Amornrat Naranuntarat Jensen | Iset Medina Vera | Mohamed Abdo Rizk | R. S. St. Onge | Filipe Silva Villela | S. M. Stamm | Pamela M. White | Takaaki Horii | N. Gural | Aishah M. Alsibaee | Sandra March | R. Jiang | Kirsten K. Hanson | C. Ben Mamoun | Sujeevi S. K. Nawaratna | Suzanne Gokool

[1]  P. Shaw,et al.  Identifying antimalarial compounds targeting dihydrofolate reductase-thymidylate synthase (DHFR-TS) by chemogenomic profiling. , 2016, International journal for parasitology.

[2]  S. Parapini,et al.  A chemical susceptibility profile of the Plasmodium falciparum transmission stages by complementary cell-based gametocyte assays. , 2016, The Journal of antimicrobial chemotherapy.

[3]  A. Calderón,et al.  Preliminary LC-MS Based Screening for Inhibitors of Plasmodium falciparum Thioredoxin Reductase (PfTrxR) among a Set of Antimalarials from the Malaria Box , 2016, Molecules.

[4]  Jonathan Diep,et al.  Identification of Plasmodium falciparum specific translation inhibitors from the MMV Malaria Box using a high throughput in vitro translation screen , 2016, Malaria Journal.

[5]  Joachim Müller,et al.  In Vitro Screening of the Open-Source Medicines for Malaria Venture Malaria Box Reveals Novel Compounds with Profound Activities against Theileria annulata Schizonts , 2016, Antimicrobial Agents and Chemotherapy.

[6]  Gregory J. Crowther,et al.  Biochemical Screening of Five Protein Kinases from Plasmodium falciparum against 14,000 Cell-Active Compounds , 2016, PloS one.

[7]  A. Hemphill,et al.  Screening of the Open Source Malaria Box Reveals an Early Lead Compound for the Treatment of Alveolar Echinococcosis , 2016, PLoS neglected tropical diseases.

[8]  H. Turner Spiroindolone NITD609 is a novel antimalarial drug that targets the P-type ATPase PfATP4. , 2016, Future medicinal chemistry.

[9]  I. V. Ogungbe,et al.  Screening and Identification of Inhibitors of Trypanosoma brucei Cathepsin L with Antitrypanosomal Activity , 2016, Chemical biology & drug design.

[10]  S. Oliver,et al.  Yeast-Based High-Throughput Screens to Identify Novel Compounds Active against Brugia malayi , 2016, PLoS neglected tropical diseases.

[11]  K. Dechering,et al.  A simple and predictive phenotypic High Content Imaging assay for Plasmodium falciparum mature gametocytes to identify malaria transmission blocking compounds , 2015, Scientific Reports.

[12]  O. Andersen,et al.  Bilayer Effects of Antimalarial Compounds , 2015, PloS one.

[13]  Identifying rapidly parasiticidal anti-malarial drugs using a simple and reliable in vitro parasite viability fast assay , 2015, Malaria Journal.

[14]  D. Schmatz,et al.  Hit and lead criteria in drug discovery for infectious diseases of the developing world , 2015, Nature Reviews Drug Discovery.

[15]  A. Üren,et al.  Identification of Novel Ezrin Inhibitors Targeting Metastatic Osteosarcoma by Screening Open Access Malaria Box , 2015, Molecular Cancer Therapeutics.

[16]  D. Wright,et al.  Identification of β-hematin inhibitors in the MMV Malaria Box , 2015, International journal for parasitology. Drugs and drug resistance.

[17]  Farah El Mazouni,et al.  A long-duration dihydroorotate dehydrogenase inhibitor (DSM265) for prevention and treatment of malaria , 2015, Science Translational Medicine.

[18]  D. Mancama,et al.  Nowhere to hide: interrogating different metabolic parameters of Plasmodium falciparum gametocytes in a transmission blocking drug discovery pipeline towards malaria elimination , 2015, Malaria Journal.

[19]  I. Igarashi,et al.  Optimization of a Fluorescence-Based Assay for Large-Scale Drug Screening against Babesia and Theileria Parasites , 2015, PloS one.

[20]  Christopher M. Armstrong,et al.  Plasmodium IspD (2-C-Methyl-D-erythritol 4-Phosphate Cytidyltransferase), an Essential and Druggable Antimalarial Target. , 2015, ACS infectious diseases.

[21]  M. Cassera,et al.  Determination of the active stereoisomer of the MEP pathway-targeting antimalarial agent MMV008138, and initial structure-activity studies. , 2015, Bioorganic & medicinal chemistry letters.

[22]  D. Fidock,et al.  Yeast-based high-throughput screen identifies Plasmodium falciparum equilibrative nucleoside transporter 1 inhibitors that kill malaria parasites. , 2015, ACS chemical biology.

[23]  Shailesh N Mistry,et al.  Screening the Medicines for Malaria Venture "Malaria Box" against the Plasmodium falciparum Aminopeptidases, M1, M17 and M18 , 2015, PloS one.

[24]  L. Maes,et al.  Repurposing of the Open Access Malaria Box for Kinetoplastid Diseases Identifies Novel Active Scaffolds against Trypanosomatids , 2015, Journal of biomolecular screening.

[25]  J. Keiser,et al.  Activities of N,N′-Diarylurea MMV665852 Analogs against Schistosoma mansoni , 2015, Antimicrobial Agents and Chemotherapy.

[26]  Elizabeth A. Winzeler,et al.  Mutations in the P-Type Cation-Transporter ATPase 4, PfATP4, Mediate Resistance to Both Aminopyrazole and Spiroindolone Antimalarials , 2014, ACS chemical biology.

[27]  Sandra Galusic MMV Malaria Box Activity Screening in Dormant Plasmodium falciparum Phenotypes , 2015 .

[28]  Hongshen Ma,et al.  (+)-SJ733, a clinical candidate for malaria that acts through ATP4 to induce rapid host-mediated clearance of Plasmodium , 2014, Proceedings of the National Academy of Sciences.

[29]  Sandhya Kortagere,et al.  Pyrazoleamide compounds are potent antimalarials that target Na+ homeostasis in intraerythrocytic Plasmodium falciparum , 2014, Nature Communications.

[30]  J. Derisi,et al.  A Chemical Rescue Screen Identifies a Plasmodium falciparum Apicoplast Inhibitor Targeting MEP Isoprenoid Precursor Biosynthesis , 2014, Antimicrobial Agents and Chemotherapy.

[31]  Yesmalie Alemán Resto,et al.  Identification of MMV Malaria Box Inhibitors of Perkinsus marinus Using an ATP-Based Bioluminescence Assay , 2014 .

[32]  Kiaran Kirk,et al.  Diverse chemotypes disrupt ion homeostasis in the malaria parasite , 2014, Molecular microbiology.

[33]  R. Sinden,et al.  A Male and Female Gametocyte Functional Viability Assay To Identify Biologically Relevant Malaria Transmission-Blocking Drugs , 2014, Antimicrobial Agents and Chemotherapy.

[34]  V. Avery,et al.  A novel approach for the discovery of chemically diverse anti-malarial compounds targeting the Plasmodium falciparum Coenzyme A synthesis pathway , 2014, Malaria Journal.

[35]  I. Igarashi,et al.  Evaluation of the inhibitory effects of miltefosine on the growth of Babesia and Theileria parasites. , 2014, Veterinary parasitology.

[36]  D. Sullivan,et al.  Gametocytocidal Screen Identifies Novel Chemical Classes with Plasmodium falciparum Transmission Blocking Activity , 2014, PloS one.

[37]  A. Kaiser,et al.  Target evaluation of deoxyhypusine synthase from Theileria parva the neglected animal parasite and its relationship to Plasmodium. , 2014, Bioorganic & medicinal chemistry.

[38]  P. Fokou,et al.  Repurposing the Open Access Malaria Box To Discover Potent Inhibitors of Toxoplasma gondii and Entamoeba histolytica , 2014, Antimicrobial Agents and Chemotherapy.

[39]  George Papadatos,et al.  Screening and hit evaluation of a chemical library against blood-stage Plasmodium falciparum , 2014, Malaria Journal.

[40]  Jürgen Bosch,et al.  Identification of an Atg8-Atg3 Protein–Protein Interaction Inhibitor from the Medicines for Malaria Venture Malaria Box Active in Blood and Liver Stage Plasmodium falciparum Parasites , 2014, Journal of medicinal chemistry.

[41]  J. Richard,et al.  Small Molecule Screen for Candidate Antimalarials Targeting Plasmodium Kinesin-5* , 2014, The Journal of Biological Chemistry.

[42]  G. Ward,et al.  Identification of Cryptosporidium parvum Active Chemical Series by Repurposing the Open Access Malaria Box , 2014, Antimicrobial Agents and Chemotherapy.

[43]  Ruili Huang,et al.  Chemical signatures and new drug targets for gametocytocidal drug development , 2014, Scientific Reports.

[44]  J. Keiser,et al.  Orally Active Antischistosomal Early Leads Identified from the Open Access Malaria Box , 2014, PLoS neglected tropical diseases.

[45]  P. Finn,et al.  Quinoxaline-Based Inhibitors of Malarial Protease PfSUB1* , 2014, Chemistry of Heterocyclic Compounds.

[46]  Hongbin Yu,et al.  Special Section on Prediction of Human Pharmacokinetic Parameters from In Vitro Systems Meeting the Challenge of Predicting Hepatic Clearance of Compounds Slowly Metabolized by Cytochrome P450 Using a Novel Hepatocyte Model, HepatoPac , 2013 .

[47]  M. Cassera,et al.  Antiapicoplast and Gametocytocidal Screening To Identify the Mechanisms of Action of Compounds within the Malaria Box , 2013, Antimicrobial Agents and Chemotherapy.

[48]  V. Avery,et al.  Identification of inhibitors of Plasmodium falciparum gametocyte development , 2013, Malaria Journal.

[49]  Jordi Mestres,et al.  Prediction of the P. falciparum Target Space Relevant to Malaria Drug Discovery , 2013, PLoS Comput. Biol..

[50]  D. Fidock,et al.  Identification of MMV Malaria Box Inhibitors of Plasmodium falciparum Early-Stage Gametocytes Using a Luciferase-Based High-Throughput Assay , 2013, Antimicrobial Agents and Chemotherapy.

[51]  Chemical profiling of deoxyhypusine hydroxylase inhibitors for antimalarial therapy , 2013, Amino Acids.

[52]  B. Slatko,et al.  Anti-Wolbachia drug discovery and development: safe macrofilaricides for onchocerciasis and lymphatic filariasis , 2013, Parasitology.

[53]  Jeremy N. Burrows,et al.  The Open Access Malaria Box: A Drug Discovery Catalyst for Neglected Diseases , 2013, PloS one.

[54]  Elizabeth A. Winzeler,et al.  Na+ Regulation in the Malaria Parasite Plasmodiumfalciparum Involves the Cation ATPase PfATP4 and Is a Target of the Spiroindolone Antimalarials , 2013, Cell host & microbe.

[55]  I. Igarashi,et al.  Evaluation of in vitro and in vivo inhibitory effects of fusidic acid on Babesia and Theileria parasites. , 2013, Veterinary parasitology.

[56]  I. Igarashi,et al.  Inhibitory effect of allicin on the growth of Babesia and Theileria equi parasites , 2013, Parasitology Research.

[57]  G. van Gemert,et al.  The Spiroindolone Drug Candidate NITD609 Potently Inhibits Gametocytogenesis and Blocks Plasmodium falciparum Transmission to Anopheles Mosquito Vector , 2012, Antimicrobial Agents and Chemotherapy.

[58]  I. Igarashi,et al.  Apicoplast-Targeting Antibacterials Inhibit the Growth of Babesia Parasites , 2012, Antimicrobial Agents and Chemotherapy.

[59]  T. VandenDriessche,et al.  PiggyBac toolbox. , 2012, Methods in molecular biology.

[60]  Yingyao Zhou,et al.  Imaging of Plasmodium Liver Stages to Drive Next-Generation Antimalarial Drug Discovery , 2011, Science.

[61]  Lan V. Zhang,et al.  Knocking out multi-gene redundancies via cycles of sexual assortment and fluorescence selection , 2010, Nature Methods.

[62]  Bruce Russell,et al.  Spiroindolones, a Potent Compound Class for the Treatment of Malaria , 2010, Science.

[63]  Pradipsinh K Rathod,et al.  Plasmodium dihydroorotate dehydrogenase: a promising target for novel anti-malarial chemotherapy. , 2010, Infectious disorders drug targets.

[64]  James R. Brown,et al.  Thousands of chemical starting points for antimalarial lead identification , 2010, Nature.

[65]  Anang A. Shelat,et al.  Chemical genetics of Plasmodium falciparum , 2010, Nature.

[66]  B. Priest,et al.  Role of hERG potassium channel assays in drug development , 2008, Channels.

[67]  S. Bhatia,et al.  Microscale culture of human liver cells for drug development , 2008, Nature Biotechnology.

[68]  Joanne M. Morrisey,et al.  Specific role of mitochondrial electron transport in blood-stage Plasmodium falciparum , 2007, Nature.

[69]  B. Roth Drugs and valvular heart disease. , 2007, The New England journal of medicine.

[70]  John P. Overington,et al.  How many drug targets are there? , 2006, Nature Reviews Drug Discovery.

[71]  D. Bojanic,et al.  Keynote review: in vitro safety pharmacology profiling: an essential tool for successful drug development. , 2005, Drug discovery today.

[72]  K. Kirk,et al.  Perturbation of the pump-leak balance for Na(+) and K(+) in malaria-infected erythrocytes. , 2001, American journal of physiology. Cell physiology.

[73]  B. Largent,et al.  Possible role of valvular serotonin 5-HT(2B) receptors in the cardiopathy associated with fenfluramine. , 2000, Molecular pharmacology.

[74]  C. Newbold,et al.  Transport of diverse substrates into malaria-infected erythrocytes via a pathway showing functional characteristics of a chloride channel. , 1994, The Journal of biological chemistry.

[75]  H. Ginsburg,et al.  Characterization of permeation pathways appearing in the host membrane of Plasmodium falciparum infected red blood cells. , 1985, Molecular and biochemical parasitology.

[76]  HighWire Press,et al.  Drug metabolism and disposition : the biological fate of chemicals. , 1973 .