Some sufficient conditions for stabilizing periodic orbits without the odd-number property by delayed feedback control in continuous-time systems

One of the important topics in the study of delayed feedback control (DFC) for chaotic systems is stability analysis. In the present Letter, we give some sufficient conditions for stabilizing periodic orbits by the DFC without the odd-number property in continuous-time systems. Our results naturally connect the stability condition for inversely unstable orbits and the odd-number limitation.

[1]  Wolfram Just,et al.  On the eigenvalue spectrum for time-delayed Floquet problems , 2000 .

[2]  Kestutis Pyragas Continuous control of chaos by self-controlling feedback , 1992 .

[3]  Toshimitsu Ushio,et al.  Delayed Feedback Control with a Minimal-Order Observer for Stabilization of Chaotic Discrete-Time Systems , 2002, Int. J. Bifurc. Chaos.

[4]  Gauthier,et al.  Stabilizing unstable periodic orbits in fast dynamical systems. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  Toshimitsu Ushio,et al.  Dynamic delayed feedback controllers for chaotic discrete-time systems , 2001 .

[6]  Keiji Konishi,et al.  Observer-based delayed-feedback control for discrete-time chaotic systems , 1998 .

[7]  Hiroyuki Nakajima,et al.  Delayed Feedback Control with State Predictor for Continuous-Time Chaotic Systems , 2002, Int. J. Bifurc. Chaos.

[8]  Wolfram Just,et al.  DELAYED FEEDBACK CONTROL OF PERIODIC ORBITS IN AUTONOMOUS SYSTEMS , 1998, chao-dyn/9808007.

[9]  Kentaro Hirata,et al.  State difference feedback for stabilizing uncertain steady states of non-linear systems , 2001 .

[10]  H. Nakajima,et al.  Limitation of generalized delayed feedback control , 1998 .

[11]  Reibold,et al.  Influence of stable Floquet exponents on time-delayed feedback control , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  Wolfram Just,et al.  Influence of control loop latency on time-delayed feedback control. , 1999 .

[13]  Kestutis Pyragas Control of chaos via an unstable delayed feedback controller. , 2001, Physical review letters.

[14]  Wolfram Just,et al.  MECHANISM OF TIME-DELAYED FEEDBACK CONTROL , 1996, chao-dyn/9611012.

[15]  H. Nakajima On analytical properties of delayed feedback control of chaos , 1997 .

[16]  Piotr Fronczak,et al.  Limits of time-delayed feedback control , 1999 .

[17]  Eckehard Schöll,et al.  Improvement of time-delayed feedback control by periodic modulation: analytical theory of Floquet mode control scheme. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  H. G. Schuster,et al.  CONTROL OF CHAOS BY OSCILLATING FEEDBACK , 1997 .

[19]  T. Ushio Limitation of delayed feedback control in nonlinear discrete-time systems , 1996 .

[20]  Kentaro Hirata,et al.  Difference feedback can stabilize uncertain steady states , 2001, IEEE Trans. Autom. Control..