Convex Shapes and Convergence Speed of Discrete Tangent Estimators

Discrete geometric estimators aim at estimating geometric characteristics of a shape with only its digitization as input data. Such an estimator is multigrid convergent when its estimates tend toward the geometric characteristics of the shape as the digitization step h tends toward 0. This paper studies the multigrid convergence of tangent estimators based on maximal digital straight segment recognition. We show that such estimators are multigrid convergent for some family of convex shapes and that their speed of convergence is on average . Experiments confirm this result and suggest that the bound is tight.

[1]  Laure Tougne,et al.  Optimal Time Computation of the Tangent of a Discrete Curve: Application to the Curvature , 1999, DGCI.

[2]  Anne Vialard Geometrical parameters extraction from discrete paths , 1996, DGCI.

[3]  François de Vieilleville,et al.  Fast, accurate and convergent tangent estimation on digital contours , 2007, Image Vis. Comput..

[4]  François de Vieilleville,et al.  Analysis and Comparative Evaluation of Discrete Tangent Estimators , 2005, DGCI.

[5]  H. Dorksen-Reiter,et al.  Convex and Concave Parts of digital Curves , 2006 .

[6]  Azriel Rosenfeld,et al.  Digital geometry - geometric methods for digital picture analysis , 2004 .

[7]  Antal Balog,et al.  On the convex hull of the integer points in a disc , 1990, SCG '91.

[8]  G. Hardy,et al.  An Introduction to the Theory of Numbers , 1938 .

[9]  François de Vieilleville,et al.  Maximal digital straight segments and convergence of discrete geometric estimators , 2005, SCIA.

[10]  Aldo de Luca,et al.  Sturmian Words, Lyndon Words and Trees , 1997, Theor. Comput. Sci..

[11]  Reinhard Klette,et al.  Multigrid Convergence of Calculated Features in Image Analysis , 2000, Journal of Mathematical Imaging and Vision.

[12]  M. Huxley Exponential sums and lattice points III , 2003 .

[13]  David Coeurjolly Algorithmique et géométrie discrète pour la caractérisation des courbes et des surfaces. (Algorithmic and digital geometry for curve and surface characterization) , 2002 .

[14]  K. Voss Discrete Images, Objects, and Functions in Zn , 1993 .

[15]  Jean-Pierre Reveillès Géométrie discrète, calcul en nombres entiers et algorithmique , 1991 .

[16]  M. Huxley EXPONENTIAL SUMS AND LATTICE POINTS II , 1993 .