Clustering: Algorithms and Applications

In this paper, we describe algorithms that perform fuzzy clustering and feature weighting simultaneously and in an unsupervised manner. These algorithms are conceptually and computationally simple, and learn a different set of feature weights for each identified cluster. The cluster dependent feature weights offer two advantages. First, they guide the clustering process to partition the data into more meaningful clusters. Second, they can be used in the subsequent steps of a learning system to improve its learning behavior. An extension of the algorithm to deal with an unknown number of clusters is also presented. The extension is based on competitive agglomeration, whereby the number of clusters is over-specified, and adjacent clusters are allowed to compete for data points in a manner that causes clusters which lose in the competition to gradually become depleted and vanish. We illustrate the performance of the proposed approach by using it to segment color images, categorize text document collections, and build a multi-modal thesaurus and use it to annotate image regions.

[1]  Dunja Mladenic,et al.  Text-learning and related intelligent agents: a survey , 1999, IEEE Intell. Syst..

[2]  Hichem Frigui,et al.  Fuzzy and possibilistic shell clustering algorithms and their application to boundary detection and surface approximation. II , 1995, IEEE Trans. Fuzzy Syst..

[3]  Robert R. Korfhage,et al.  Information Storage and Retrieval , 1963 .

[4]  Peter H. A. Sneath,et al.  Numerical Taxonomy: The Principles and Practice of Numerical Classification , 1973 .

[5]  Peter C. Cheeseman,et al.  Bayesian Classification (AutoClass): Theory and Results , 1996, Advances in Knowledge Discovery and Data Mining.

[6]  Thomas G. Dietterich,et al.  Learning with Many Irrelevant Features , 1991, AAAI.

[7]  Gerald Kowalski,et al.  Information Retrieval Systems: Theory and Implementation , 1997 .

[8]  Larry A. Rendell,et al.  A Practical Approach to Feature Selection , 1992, ML.

[9]  Daniel A. Keim,et al.  Clustering techniques for large data sets—from the past to the future , 1999, KDD '99.

[10]  Charles V. Stewart,et al.  MINPRAN: A New Robust Estimator for Computer Vision , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Alex Pentland,et al.  Cooperative Robust Estimation Using Layers of Support , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  R. Michalski,et al.  Learning from Observation: Conceptual Clustering , 1983 .

[13]  Paul S. Bradley,et al.  Refining Initial Points for K-Means Clustering , 1998, ICML.

[14]  Paul S. Bradley,et al.  Scaling Clustering Algorithms to Large Databases , 1998, KDD.

[15]  Oren Etzioni,et al.  Fast and Intuitive Clustering of Web Documents , 1997, KDD.

[16]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[17]  Jean-Michel Jolion,et al.  Robust Clustering with Applications in Computer Vision , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Chris Buckley,et al.  Optimization of inverted vector searches , 1985, SIGIR '85.

[19]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decision-making , 1988 .

[21]  Hichem Frigui,et al.  Unsupervised learning of prototypes and attribute weights , 2004, Pattern Recognit..

[22]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[23]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[24]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[25]  Jitendra Malik,et al.  Blobworld: A System for Region-Based Image Indexing and Retrieval , 1999, VISUAL.

[26]  Hans-Peter Kriegel,et al.  A distribution-based clustering algorithm for mining in large spatial databases , 1998, Proceedings 14th International Conference on Data Engineering.

[27]  M. Sugeno,et al.  Fuzzy measure of fuzzy events defined by fuzzy integrals , 1992 .

[28]  Charles Elkan,et al.  Scalability for clustering algorithms revisited , 2000, SKDD.

[29]  David W. Aha,et al.  A Review and Empirical Evaluation of Feature Weighting Methods for a Class of Lazy Learning Algorithms , 1997, Artificial Intelligence Review.

[30]  David R. Karger,et al.  Scatter/Gather: a cluster-based approach to browsing large document collections , 1992, SIGIR '92.

[31]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[32]  Hichem Frigui,et al.  A Robust Competitive Clustering Algorithm With Applications in Computer Vision , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Phipps Arabie,et al.  AN OVERVIEW OF COMBINATORIAL DATA ANALYSIS , 1996 .

[34]  B. S. Manjunath,et al.  Introduction to mpeg-7 , 2002 .

[35]  Hichem Frigui,et al.  Simultaneous clustering and attribute discrimination , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[36]  Sergios Theodoridis,et al.  Pattern Recognition , 1998, IEEE Trans. Neural Networks.

[37]  Dunja Mladeni,et al.  Text-learning and related intelligent agentsDunja , 1999 .

[38]  Isak Gath,et al.  Unsupervised Optimal Fuzzy Clustering , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[40]  Thomas G. Dietterich,et al.  Learning Boolean Concepts in the Presence of Many Irrelevant Features , 1994, Artif. Intell..

[41]  Daniel A. Keim,et al.  An Efficient Approach to Clustering in Large Multimedia Databases with Noise , 1998, KDD.

[42]  Larry A. Rendell,et al.  The Feature Selection Problem: Traditional Methods and a New Algorithm , 1992, AAAI.

[43]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[44]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[45]  Qiang Yang,et al.  A unified framework for semantics and feature based relevance feedback in image retrieval systems , 2000, ACM Multimedia.

[46]  Donald Gustafson,et al.  Fuzzy clustering with a fuzzy covariance matrix , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[47]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[48]  Alexander Dekhtyar,et al.  Information Retrieval , 2018, Lecture Notes in Computer Science.

[49]  Hichem Frigui,et al.  Clustering by competitive agglomeration , 1997, Pattern Recognit..

[50]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[51]  Hichem Frigui,et al.  The fuzzy c spherical shells algorithm: A new approach , 1992, IEEE Trans. Neural Networks.

[52]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .