A Curved‐Wave Theory for EXAFS with Effective Scattering Amplitudes

The modified small-scattering-centre approximation (MSSCA) is applied to the multiple-scattering theory of EXAFS. In the MSSCA the incoming spherical electron waves are approximated in the range of the scattering potential by an isotropic spherical wave. The scattering of these isotropic spherical waves can be described by effective scattering amplitudes, which are easy to evaluate. This method is a much better description than the plane-wave approximation routinely used in EXAFS analysis. In comparison with the plane-wave approximation the effort is some what increased by the distance dependence of the effective scattering amplitudes. The strength of the MSSCA is that it yields simple expressions for the multiple-scattering contributions, which improve the accuracy especially for scattering pathways involving forward scattering events considerably. Die modifizierte Naherung kleiner Streuzentren (MSSCA) wird auf die Vielfachstreutheorie fur EXAFS angewendet. In der MSSCA werden die einfallenden kugelformigen Elektronenwellen im Bereich des Streupotentials durch eine isotrope Kugelwelle approximiert. Die Streuung solcher isotroper Kugelwellen kann durch effektive Streuamplituden beschrieben werden, die einfach zu berechnen sind. Diese Methode ist eine weitaus bessere Beschreibung als die Approximation durch eine ebene Welle, wie sie routinemasig in der EXAFS-Auswertung verwendet wird. Im Vergleich zur Approximation durch eine ebene Welle erhoht sich der Aufwand etwas durch die Abstandsabhangigkeit der effektiven Streuamplituden. Die Starke der MSSCA besteht darin, das sie einfache Ausdrucke fur die Vielfachstreubeitrage liefert, die die Genauigkeit besonders fur Streuwege, die Vorwartsstreuereignisse enthalten, betrachtlich verbessern.

[1]  P. Rennert,et al.  A reduced angular momentum expansion in the multiple‐scattering theory , 1986 .

[2]  N. Binsted,et al.  A rapid, exact, curved-wave theory for EXAFS calculations. II. The multiple-scattering contributions , 1986 .

[3]  Kitamura,et al.  Multiple-scattering approach to the x-ray-absorption spectra of 3d transition metals. , 1986, Physical review. B, Condensed matter.

[4]  Bullock,et al.  Spherical-wave effects in photoelectron diffraction. , 1986, Physical review. B, Condensed matter.

[5]  Shirley,et al.  Small-atom approximations for photoelectron scattering in the intermediate-energy range. , 1985, Physical review. B, Condensed matter.

[6]  Shik Shin,et al.  Photoelectron Diffraction from Ni(001)c(2 ×2)-S(2p) , 1984 .

[7]  W. Schaich Derivation of single-scattering formulas for x-ray-absorption and high-energy electron-loss spectroscopies , 1984 .

[8]  N. Binsted,et al.  A rapid, exact curved-wave theory for EXAFS calculations , 1984 .

[9]  N. Motta,et al.  Structural and electronic properties of Fe and TiFe from extended and near-edge x-ray-absorption structure , 1983 .

[10]  E. D. Crozier,et al.  Multiple scattering and disorder in extended x-ray-absorption fine-structure analysis , 1983 .

[11]  E. Stern,et al.  Phase factor in extended x-ray-absorption fine structure , 1983 .

[12]  H. Kasai,et al.  On Determination of Chemisorption Geometry from Angle-Resolved Core-Level X-Ray Photoemission , 1983 .

[13]  P. Rennert,et al.  Local density of states and EXAFS in the small scattering atom approximation , 1983 .

[14]  A. Bianconi,et al.  EXAFS and Near Edge Structure , 1983 .

[15]  P. Eisenberger,et al.  Extended x-ray absorption fine structure—its strengths and limitations as a structural tool , 1981 .

[16]  B. Teo Novel method for angle determinations by EXAFS via a new multiple-scattering formalism. [Extended x-ray absorption fine structure] , 1981 .

[17]  Ting-Kuo Lee,et al.  Theory of Extended X-Ray Absorption Fine Structure , 1975 .