Electrostatic micromirrors for subaperturing in an adaptive optics system

An electrostatic digital mirror device has been used to replace the lenslet array in a simple adaptive optics system. Clusters of binary pixels define the subapertures of the image plane and direct a small portion of the image onto a detector. The detector measures position shifts in the focused subaperture image caused by optical aberrations. Measurements on a digital mirror-based system and a similar lenslet-based system compare favorably to within a simple scaling factor. A subaperture system designed around a digital mirror device could aid in the development of a sequential subaperturing method that would replace the more complex schemes used in traditional adaptive optics.

[1]  M Kufner,et al.  Application of three-dimensional micro-optical components formed by lithography, electroforming, and plastic molding. , 1993, Applied optics.

[2]  I. Ali,et al.  Chemical-mechanical polishing of interlayer dielectric: a review , 1994 .

[3]  David Charles Dayton,et al.  Adaptive optics using a liquid crystal phase modulator in conjunction with a Shack-Hartmann wave front sensor and zonal control algorithm. , 1997 .

[4]  Larry J. Hornbeck,et al.  Deformable-Mirror Spatial Light Modulators , 1990, Optics & Photonics.

[5]  D. Castañón,et al.  Continuous-membrane surface-micromachined silicon deformable mirror , 1997 .

[6]  Mark N. Horenstein,et al.  Electrostatic effects in micromachined actuators for adaptive optics , 1997 .

[7]  Alexis Kudryashov,et al.  Liquid crystal phase modulator for adaptive optics. Temporal performance characterization , 1997 .

[8]  G. Love,et al.  Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator. , 1997, Applied Optics.

[9]  Philip Birch,et al.  A real-time closed-loop liquid crystal adaptive optics system: first results , 1997 .

[10]  Michael A. Mignardi Digital Micromirror Array for Projection TV , 2002 .

[11]  P. Sarro,et al.  Flexible mirror micromachined in silicon. , 1995, Applied optics.

[12]  D Dayton,et al.  Adaptive optics using a liquid crystal phase modulator in conjunction with a Shack-Hartmann wavefront sensor and zonal control algorithm , 1998, Remote Sensing.

[13]  M. Horenstein,et al.  Development of microelectromechanical deformable mirrors for phase modulation of light , 1997 .

[14]  Jerry Avorn Technology , 1929, Nature.

[15]  William J. Kaiser,et al.  Fabrication and characterization of a micromachined deformable mirror for adaptive optics applications , 1993, Defense, Security, and Sensing.

[16]  Pasqualina M. Sarro,et al.  Technology, characterization, and applications of adaptive mirrors fabricated with IC-compatible micromachining , 1995, Optics & Photonics.

[17]  M. Horenstein,et al.  Microelectromechanical deformable mirrors , 1999 .

[18]  D Colucci,et al.  Adaptive optics for array telescopes using piston-and-tilt wave-front sensing. , 1992, Applied optics.

[19]  Jeffrey B. Sampsell,et al.  Digital micromirror device and its application to projection displays , 1994 .

[20]  Mark N. Horenstein,et al.  Real time optical correction using electrostatically actuated MEMS devices , 1999 .

[21]  Michael C. Roggemann,et al.  Shot noise performance of Hartmann and shearing interferometer wavefront sensors , 1995, Optics & Photonics.