Function of Excitatory Periaqueductal Gray Synapses in the Ventral Tegmental Area following Inflammatory Injury

Abstract Manipulating the activity of ventral tegmental area (VTA) dopamine (DA) neurons can drive nocifensive reflexes, and their firing rates are reduced following noxious stimuli. However, the pain-relevant inputs to the VTA remain incompletely understood. In this study, we used male and female mice in combination with identified dopamine and GABA neurons in the VTA that receive excitatory inputs from the periaqueductal gray (PAG), a nexus of ascending pain information. We tested whether PAG–VTA synapses undergo functional plasticity in response to a pain model using optical stimulation in conjunction with slice electrophysiology. We found that acute carrageenan inflammation does not significantly affect the strength of excitatory PAG synapses onto VTA DA neurons. However, at the PAG synapses on VTA GABA neurons, the subunit composition of NMDA receptors is altered; the complement of NR2D subunits at synaptic sites appears to be lost. Thus, our data support a model in which injury initially alters synapses on VTA GABA neurons. Over time, these alterations may increase tonic inhibition of VTA DA neurons leading to their reduced firing.

[1]  H. Gong,et al.  A Whole-Brain Connectivity Map of VTA and SNc Glutamatergic and GABAergic Neurons in Mice , 2021, Frontiers in Neuroanatomy.

[2]  M. Bruchas,et al.  Pain induces adaptations in ventral tegmental area dopamine neurons to drive anhedonia-like behavior , 2021, Nature Neuroscience.

[3]  G. Collingridge,et al.  Multiple roles of GluN2D-containing NMDA receptors in short-term potentiation and long-term potentiation in mouse hippocampal slices , 2021, Neuropharmacology.

[4]  J. Morón,et al.  Behavioral outcomes of complete Freund's adjuvant-induced inflammatory pain in the rodent hind-paw: a systematic review and meta-analysis. , 2021, Pain.

[5]  S. Lammel,et al.  Pain modulates dopamine neurons via a spinal–parabrachial–mesencephalic circuit , 2021, Nature Neuroscience.

[6]  Yong-Mei Zhang,et al.  Projection-specific dopamine neurons in the ventral tegmental area participated in morphine-induced hyperalgesia and anti-nociceptive tolerance in male mice , 2021, Journal of psychopharmacology.

[7]  Zizhen Zhang,et al.  Dopamine Inputs from the Ventral Tegmental Area into the Medial Prefrontal Cortex Modulate Neuropathic Pain-Associated Behaviors in Mice. , 2020, Cell reports.

[8]  C. Vaaga,et al.  Cerebellar modulation of synaptic input to freezing-related neurons in the periaqueductal gray , 2020, eLife.

[9]  J. Kauer,et al.  Periaqueductal Gray and Rostromedial Tegmental Inhibitory Afferents to VTA Have Distinct Synaptic Plasticity and Opiate Sensitivity , 2020, Neuron.

[10]  G. Popescu,et al.  Ca2+-Dependent Inactivation of GluN2A and GluN2B NMDA Receptors Occurs by a Common Kinetic Mechanism. , 2020, Biophysical journal.

[11]  S. Borgland,et al.  Peripheral nerve injury-induced alterations in VTA neuron firing properties , 2019, Molecular Brain.

[12]  K. Solt,et al.  The rostromedial tegmental nucleus: a key modulator of pain and opioid analgesia. , 2019, Pain.

[13]  Elyssa B. Margolis,et al.  A Midbrain Circuit that Mediates Headache Aversiveness in Rats , 2019, Cell reports.

[14]  M. Ungless,et al.  Transcriptional profiling aligned with in situ expression image analysis reveals mosaically expressed molecular markers for GABA neuron sub‐groups in the ventral tegmental area , 2019, The European journal of neuroscience.

[15]  T. Kash,et al.  κ-Opioid Receptor Modulation of GABAergic Inputs onto Ventrolateral Periaqueductal Gray Dopamine Neurons , 2019, Molecular Neuropsychiatry.

[16]  E. Brown,et al.  The Role of Glutamatergic and Dopaminergic Neurons in the Periaqueductal Gray/Dorsal Raphe: Separating Analgesia and Anxiety , 2019, eNeuro.

[17]  Christina K. Kim,et al.  A Neural Circuit Mechanism for Encoding Aversive Stimuli in the Mesolimbic Dopamine System , 2019, Neuron.

[18]  Liqun Luo,et al.  Topological Organization of Ventral Tegmental Area Connectivity Revealed by Viral-Genetic Dissection of Input-Output Relations , 2019, Cell reports.

[19]  M. Mishina,et al.  Altered Synaptic and Extrasynaptic NMDA Receptor Properties in Substantia Nigra Dopaminergic Neurons From Mice Lacking the GluN2D Subunit , 2018, Front. Cell. Neurosci..

[20]  T. Kash,et al.  GABA neurons of the ventral periaqueductal gray area modulate behaviors associated with anxiety and conditioned fear , 2018, Brain Structure and Function.

[21]  L. Wollmuth,et al.  Structure, function, and allosteric modulation of NMDA receptors , 2018, The Journal of general physiology.

[22]  David J. Barker,et al.  Selective Brain Distribution and Distinctive Synaptic Architecture of Dual Glutamatergic-GABAergic Neurons. , 2018, Cell reports.

[23]  J. Kauer,et al.  Synaptic function and plasticity in identified inhibitory inputs onto VTA dopamine neurons , 2018, The European journal of neuroscience.

[24]  A. Yamanaka,et al.  Activation of ventral tegmental area dopaminergic neurons reverses pathological allodynia resulting from nerve injury or bone cancer , 2018, Molecular pain.

[25]  M. Ungless,et al.  nNOS-Expressing Neurons in the Ventral Tegmental Area and Substantia Nigra Pars Compacta , 2018, eNeuro.

[26]  C. Lüscher,et al.  Periaqueductal efferents to dopamine and GABA neurons of the VTA , 2017, bioRxiv.

[27]  Chen Li,et al.  Brain-Derived Neurotrophic Factor in the Mesolimbic Reward Circuitry Mediates Nociception in Chronic Neuropathic Pain , 2017, Biological Psychiatry.

[28]  M. Bruchas,et al.  Divergent Modulation of Nociception by Glutamatergic and GABAergic Neuronal Subpopulations in the Periaqueductal Gray , 2017, eNeuro.

[29]  Elyssa B. Margolis,et al.  Ventral tegmental area: cellular heterogeneity, connectivity and behaviour , 2017, Nature Reviews Neuroscience.

[30]  G. Collingridge,et al.  Multiple roles of GluN2B-containing NMDA receptors in synaptic plasticity in juvenile hippocampus , 2017, Neuropharmacology.

[31]  Y. Smith,et al.  GluN2D-Containing N-methyl-d-Aspartate Receptors Mediate Synaptic Transmission in Hippocampal Interneurons and Regulate Interneuron Activity , 2016, Molecular Pharmacology.

[32]  M. Morgan,et al.  Relative contribution of the dorsal raphe nucleus and ventrolateral periaqueductal gray to morphine antinociception and tolerance in the rat , 2016, The European journal of neuroscience.

[33]  Zayd M. Khaliq,et al.  Electrical and Ca2+ signaling in dendritic spines of substantia nigra dopaminergic neurons , 2016, eLife.

[34]  I. Vetter,et al.  The thermal probe test: A novel behavioral assay to quantify thermal paw withdrawal thresholds in mice , 2016, Temperature.

[35]  Sara E. Berger,et al.  The indirect pathway of the nucleus accumbens shell amplifies neuropathic pain , 2015, Nature Neuroscience.

[36]  Hyung Jin Kim,et al.  Coexistence of glutamatergic spine synapses and shaft synapses in substantia nigra dopamine neurons , 2015, Scientific Reports.

[37]  Liqun Luo,et al.  Circuit Architecture of VTA Dopamine Neurons Revealed by Systematic Input-Output Mapping , 2015, Cell.

[38]  H. Monyer,et al.  GluN2D-containing NMDA receptors-mediate synaptic currents in hippocampal interneurons and pyramidal cells in juvenile mice , 2015, Frontiers in Cellular Neuroscience.

[39]  Alice M Stamatakis,et al.  Considerations When Using Cre-Driver Rodent Lines for Studying Ventral Tegmental Area Circuitry , 2015, Neuron.

[40]  Masahiko Watanabe,et al.  Opposing Role of NMDA Receptor GluN2B and GluN2D in Somatosensory Development and Maturation , 2014, The Journal of Neuroscience.

[41]  Cyril Bories,et al.  A simplified up-down method (SUDO) for measuring mechanical nociception in rodents using von Frey filaments , 2014, Molecular pain.

[42]  S. Suckow,et al.  Columnar distribution of catecholaminergic neurons in the ventrolateral periaqueductal gray and their relationship to efferent pathways , 2013, Synapse.

[43]  H. Fields,et al.  Pain relief produces negative reinforcement through activation of mesolimbic reward–valuation circuitry , 2012, Proceedings of the National Academy of Sciences.

[44]  Kelly R. Tan,et al.  GABA Neurons of the VTA Drive Conditioned Place Aversion , 2012, Neuron.

[45]  G. Stuber,et al.  Activation of VTA GABA Neurons Disrupts Reward Consumption , 2012, Neuron.

[46]  S. Lammel,et al.  Projection-Specific Modulation of Dopamine Neuron Synapses by Aversive and Rewarding Stimuli , 2011, Neuron.

[47]  Joyce Mendes-Gomes,et al.  Ventrolateral periaqueductal gray lesion attenuates nociception but does not change anxiety-like indices or fear-induced antinociception in mice , 2011, Behavioural Brain Research.

[48]  D. Jane,et al.  Functional heterogeneity of NMDA receptors in rat substantia nigra pars compacta and reticulata neurones , 2010, The European journal of neuroscience.

[49]  Allan R. Jones,et al.  A robust and high-throughput Cre reporting and characterization system for the whole mouse brain , 2009, Nature Neuroscience.

[50]  S. Sesack,et al.  Periaqueductal gray afferents synapse onto dopamine and GABA neurons in the rat ventral tegmental area , 2009, Journal of neuroscience research.

[51]  David Julius,et al.  Cellular and Molecular Mechanisms of Pain , 2009, Cell.

[52]  M. Ungless,et al.  Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli , 2009, Proceedings of the National Academy of Sciences.

[53]  J. Kauer,et al.  PKG and PKA Signaling in LTP at GABAergic Synapses , 2009, Neuropsychopharmacology.

[54]  P. Lu,et al.  The persistence of a long-term negative affective state following the induction of either acute or chronic pain , 2008, PAIN.

[55]  J. Bolam,et al.  Stereological estimates of dopaminergic, GABAergic and glutamatergic neurons in the ventral tegmental area, substantia nigra and retrorubral field in the rat , 2008, Neuroscience.

[56]  S. Lammel,et al.  Unique Properties of Mesoprefrontal Neurons within a Dual Mesocorticolimbic Dopamine System , 2008, Neuron.

[57]  D. Jane,et al.  NR2B‐ and NR2D‐containing synaptic NMDA receptors in developing rat substantia nigra pars compacta dopaminergic neurones , 2008, The Journal of physiology.

[58]  R. Zukin,et al.  Ca2+-permeable AMPA receptors in synaptic plasticity and neuronal death , 2007, Trends in Neurosciences.

[59]  C. Lüscher,et al.  Cocaine triggered AMPA receptor redistribution is reversed in vivo by mGluR-dependent long-term depression , 2006, Nature Neuroscience.

[60]  A. Gibb,et al.  Functional NR2B‐ and NR2D‐containing NMDA receptor channels in rat substantia nigra dopaminergic neurones , 2005, The Journal of physiology.

[61]  J. Bolam,et al.  Uniform Inhibition of Dopamine Neurons in the Ventral Tegmental Area by Aversive Stimuli , 2004, Science.

[62]  M. Li,et al.  Generation of embryonic stem cells and transgenic mice expressing green fluorescence protein in midbrain dopaminergic neurons , 2004, The European journal of neuroscience.

[63]  A. Sadikot,et al.  Pitx3 is required for motor activity and for survival of a subset of midbrain dopaminergic neurons , 2003, Development.

[64]  Jianhong Luo,et al.  Subunit composition of N-methyl-D-aspartate receptors in the central nervous system that contain the NR2D subunit. , 1998, Molecular pharmacology.

[65]  A. Wenzel,et al.  Developmental and Regional Expression of NMDA Receptor Subtypes Containing the NR2D Subunit in Rat Brain , 1996, Journal of neurochemistry.

[66]  W. Schultz,et al.  Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli , 1996, Nature.

[67]  B. Sakmann,et al.  Developmental and regional expression in the rat brain and functional properties of four NMDA receptors , 1994, Neuron.

[68]  R. North,et al.  Opioids excite dopamine neurons by hyperpolarization of local interneurons , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[69]  R. Dubner,et al.  A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia , 1987, Pain.

[70]  G. Gebhart,et al.  Evaluation of the periaqueductal central gray (PAG) as a morphine-specific locus of action and examination of morphine-induced and stimulation-produced analgesia at coincident PAG loci , 1977, Brain Research.

[71]  K. Benitz,et al.  Local Morphological Response Following a Single Subcutaneous Injection of Carrageenin in the Rat , 1959, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[72]  A. Sadikot,et al.  Pitx 3 is required for motor activity and for survival of a subset of midbrain dopaminergic neurons , 2022 .