Model reduction for the material point method via learning the deformation map and its spatial-temporal gradients

This work proposes a model-reduction approach for the material point method on nonlinear manifolds. The technique approximates the kinematics by approximating the deformation map in a manner that restricts deformation trajectories to reside on a low-dimensional manifold expressed from the extrinsic view via a parameterization function. By explicitly approximating the deformation map and its spatial-temporal gradients, the deformation gradient and the velocity can be computed simply by differentiating the associated parameterization function. Unlike classical model reduction techniques that build a subspace for a finite number of degrees of freedom, the proposed method approximates the entire deformation map with infinite degrees of freedom. Therefore, the technique supports resolution changes in the reduced simulation, attaining the challenging task of zero-shot super-resolution by generating material points unseen in the training data. The ability to generate material points also allows for adaptive quadrature rules for stress update. A family of projection methods is devised to generate dynamics, i.e., at every time step, the methods perform three steps: (1) generate quadratures in the full space from the reduced space, (2) compute position and velocity updates in the full space, and (3) perform a least-squares projection of the updated position and velocity onto the low-dimensional manifold and its tangent space. Computational speedup is achieved via hyper-reduction, i.e., only a subset of the original material points are needed for dynamics update. Large-scale numerical examples with millions of material points illustrate the method’s ability to gain an order-of-magnitude computational-cost saving—indeed real-time simulations in some cases—with negligible errors.

[1]  Chenfanfu Jiang,et al.  The material point method for simulating continuum materials , 2016, SIGGRAPH Courses.

[2]  Chenfanfu Jiang,et al.  A material point method for viscoelastic fluids, foams and sponges , 2015, Symposium on Computer Animation.

[3]  L. Sirovich Turbulence and the dynamics of coherent structures. III. Dynamics and scaling , 1987 .

[4]  Florence Bertails-Descoubes,et al.  A semi-implicit material point method for the continuum simulation of granular materials , 2016, ACM Trans. Graph..

[5]  Mridul Aanjaneya,et al.  A unified second-order accurate in time MPM formulation for simulating viscoelastic liquids with phase change , 2021, ACM Transactions on Graphics.

[6]  Chenfanfu Jiang,et al.  The affine particle-in-cell method , 2015, ACM Trans. Graph..

[7]  Chenjie Gu,et al.  Model Order Reduction of Nonlinear Dynamical Systems , 2011 .

[8]  Lawrence Sirovich,et al.  Karhunen–Loève procedure for gappy data , 1995 .

[9]  J. Marsden,et al.  A subspace approach to balanced truncation for model reduction of nonlinear control systems , 2002 .

[10]  Frédo Durand,et al.  QuanTaichi , 2021, ACM Trans. Graph..

[11]  D. Rovas,et al.  Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods , 2002 .

[12]  Michael W. Mahoney,et al.  Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction , 2019, ArXiv.

[13]  Jernej Barbic,et al.  Real-time large-deformation substructuring , 2011, ACM Trans. Graph..

[14]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[15]  Peter Benner,et al.  Interpolatory Projection Methods for Parameterized Model Reduction , 2011, SIAM J. Sci. Comput..

[16]  C. Farhat International Journal for Numerical Methods in Engineering , 2019 .

[17]  Doug L. James,et al.  Real-Time subspace integration for St. Venant-Kirchhoff deformable models , 2005, ACM Trans. Graph..

[18]  Traian Iliescu,et al.  Proper orthogonal decomposition closure models for turbulent flows: A numerical comparison , 2011, 1106.3585.

[19]  Frédo Durand,et al.  DiffTaichi: Differentiable Programming for Physical Simulation , 2020, ICLR.

[20]  Daniel L. K. Yamins,et al.  Flexible Neural Representation for Physics Prediction , 2018, NeurIPS.

[21]  Frédo Durand,et al.  Taichi , 2019, ACM Trans. Graph..

[22]  Chenfanfu Jiang,et al.  Simulation and Visualization of Ductile Fracture with the Material Point Method , 2019, PACMCGIT.

[23]  Chenfanfu Jiang,et al.  Anisotropic elastoplasticity for cloth, knit and hair frictional contact , 2017, ACM Trans. Graph..

[24]  C. Farhat,et al.  Efficient non‐linear model reduction via a least‐squares Petrov–Galerkin projection and compressive tensor approximations , 2011 .

[25]  Andre Pradhana,et al.  Drucker-prager elastoplasticity for sand animation , 2016, ACM Trans. Graph..

[26]  R. Maulik,et al.  Reduced-order modeling of advection-dominated systems with recurrent neural networks and convolutional autoencoders , 2020, 2002.00470.

[27]  David Galbally,et al.  Non‐linear model reduction for uncertainty quantification in large‐scale inverse problems , 2009 .

[28]  David I. W. Levin,et al.  Latent‐space Dynamics for Reduced Deformable Simulation , 2019, Comput. Graph. Forum.

[29]  L. Cordier,et al.  Optimal rotary control of the cylinder wake using proper orthogonal decomposition reduced-order model , 2005 .

[30]  Chenfanfu Jiang,et al.  A hybrid material‐point spheropolygon‐element method for solid and granular material interaction , 2019, International Journal for Numerical Methods in Engineering.

[31]  Howard L. Schreyer,et al.  Fluid–membrane interaction based on the material point method , 2000 .

[32]  Charbel Farhat,et al.  Reduced-order fluid/structure modeling of a complete aircraft configuration , 2006 .

[33]  B. R. Noack Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 2013 .

[34]  Charbel Farhat,et al.  Nonlinear model order reduction based on local reduced‐order bases , 2012 .

[35]  Matthew F. Barone,et al.  Stable Galerkin reduced order models for linearized compressible flow , 2009, J. Comput. Phys..

[36]  Bernard Haasdonk,et al.  Reduced Basis Approximation for Nonlinear Parametrized Evolution Equations based on Empirical Operator Interpolation , 2012, SIAM J. Sci. Comput..

[37]  Sung-Kie Youn,et al.  A particle‐in‐cell solution to the silo discharging problem , 1999 .

[38]  Yin Yang,et al.  Expediting precomputation for reduced deformable simulation , 2015, ACM Trans. Graph..

[39]  Peter Benner,et al.  Parametric model order reduction of thermal models using the bilinear interpolatory rational Krylov algorithm , 2015 .

[40]  Nils Thürey,et al.  Latent Space Physics: Towards Learning the Temporal Evolution of Fluid Flow , 2018, Comput. Graph. Forum.

[41]  Chenfanfu Jiang,et al.  A polynomial particle-in-cell method , 2017, ACM Trans. Graph..

[42]  D. Sulsky Erratum: Application of a particle-in-cell method to solid mechanics , 1995 .

[43]  Chenfanfu Jiang,et al.  Augmented MPM for phase-change and varied materials , 2014, ACM Trans. Graph..

[44]  Dinesh Manocha,et al.  A massively parallel and scalable multi-GPU material point method , 2020, ACM Trans. Graph..

[45]  D. Ryckelynck,et al.  A priori hyperreduction method: an adaptive approach , 2005 .

[46]  Ranga Komanduri,et al.  Simulation of dynamic crack growth using the generalized interpolation material point (GIMP) method , 2007 .

[47]  Jernej Barbic,et al.  Precomputed acoustic transfer: output-sensitive, accurate sound generation for geometrically complex vibration sources , 2006, ACM Trans. Graph..

[48]  Yoshua Bengio,et al.  Understanding the difficulty of training deep feedforward neural networks , 2010, AISTATS.

[49]  Robert Bridson,et al.  Fast Poisson disk sampling in arbitrary dimensions , 2007, SIGGRAPH '07.

[50]  Juan Du,et al.  Non-linear Petrov-Galerkin methods for reduced order hyperbolic equations and discontinuous finite element methods , 2013, J. Comput. Phys..

[51]  Paul T. Boggs,et al.  Preserving Lagrangian Structure in Nonlinear Model Reduction with Application to Structural Dynamics , 2014, SIAM J. Sci. Comput..

[52]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[53]  Karen Willcox,et al.  A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems , 2015, SIAM Rev..

[54]  Theodore Kim,et al.  Optimizing cubature for efficient integration of subspace deformations , 2008, SIGGRAPH Asia '08.

[55]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[56]  Kevin Carlberg,et al.  Adaptive h‐refinement for reduced‐order models , 2014, ArXiv.

[57]  Chenfanfu Jiang,et al.  On hybrid lagrangian-eulerian simulation methods: practical notes and high-performance aspects , 2019, SIGGRAPH Courses.

[58]  A. Antoulas,et al.  H 2 Model Reduction for Large-scale Linear Dynamical Systems * , 2022 .

[59]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[60]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[61]  Lin Gao,et al.  Realtime Simulation of Thin-Shell Deformable Materials Using CNN-Based Mesh Embedding , 2020, IEEE Robotics and Automation Letters.

[62]  Jeffrey P. Thomas,et al.  Proper Orthogonal Decomposition Technique for Transonic Unsteady Aerodynamic Flows , 2000 .

[63]  Tianjia Shao,et al.  High-order differentiable autoencoder for nonlinear model reduction , 2021, ACM Trans. Graph..

[64]  J. Peraire,et al.  An efficient reduced‐order modeling approach for non‐linear parametrized partial differential equations , 2008 .

[65]  Andre Pradhana,et al.  A moving least squares material point method with displacement discontinuity and two-way rigid body coupling , 2018, ACM Trans. Graph..

[66]  Shi-Min Hu,et al.  A Temporally Adaptive Material Point Method with Regional Time Stepping , 2018, Comput. Graph. Forum.

[67]  Karen Willcox,et al.  A surrogate modeling approach to support real-time structural assessment and decision-making , 2014 .

[68]  Benjamin Peherstorfer,et al.  Online Adaptive Model Reduction for Nonlinear Systems via Low-Rank Updates , 2015, SIAM J. Sci. Comput..

[69]  John A. Nairn,et al.  Material Point Method Calculations with Explicit Cracks , 2003 .

[70]  J. L. Nicolini,et al.  Model Order Reduction of Electromagnetic Particle-in-Cell Kinetic Plasma Simulations via Proper Orthogonal Decomposition , 2019, IEEE Transactions on Plasma Science.

[71]  Muruhan Rathinam,et al.  A New Look at Proper Orthogonal Decomposition , 2003, SIAM J. Numer. Anal..

[72]  C. Farhat,et al.  A low‐cost, goal‐oriented ‘compact proper orthogonal decomposition’ basis for model reduction of static systems , 2011 .

[73]  Prasanna Balaprakash,et al.  Time-series learning of latent-space dynamics for reduced-order model closure , 2019, Physica D: Nonlinear Phenomena.

[74]  Peter Yichen Chen,et al.  Hybrid discrete-continuum modeling of shear localization in granular media , 2021 .

[75]  Markus H. Gross,et al.  Deep Fluids: A Generative Network for Parameterized Fluid Simulations , 2018, Comput. Graph. Forum.

[76]  Xuchen Han,et al.  A Hybrid Material Point Method for Frictional Contact with Diverse Materials , 2019, PACMCGIT.

[77]  J. Peraire,et al.  Balanced Model Reduction via the Proper Orthogonal Decomposition , 2002 .

[78]  G. Karniadakis,et al.  A spectral viscosity method for correcting the long-term behavior of POD models , 2004 .

[79]  L. Sirovich Turbulence and the dynamics of coherent structures. II. Symmetries and transformations , 1987 .

[80]  Pedro Arduino,et al.  Avalanche and landslide simulation using the material point method: flow dynamics and force interaction with structures , 2014, Computational Geosciences.

[81]  Kenji Kashima,et al.  Nonlinear model reduction by deep autoencoder of noise response data , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[82]  Neelesh A. Patankar,et al.  Lagrangian numerical simulation of particulate flows , 2001 .

[83]  Peter Benner,et al.  Reduced-Order Modeling and ROM-Based Optimization of Batch Chromatography , 2013, ENUMATH.

[84]  Chenfanfu Jiang,et al.  Hierarchical Optimization Time Integration for CFL-Rate MPM Stepping , 2020, ACM Trans. Graph..

[85]  Andre Pradhana,et al.  GPU optimization of material point methods , 2018, ACM Trans. Graph..

[86]  Charles-Henri Bruneau,et al.  Enablers for robust POD models , 2009, J. Comput. Phys..

[87]  M. Bampton,et al.  Coupling of substructures for dynamic analyses. , 1968 .

[88]  Alexey Stomakhin,et al.  Energetically consistent invertible elasticity , 2012, SCA '12.

[89]  A. Sadeghirad,et al.  A convected particle domain interpolation technique to extend applicability of the material point method for problems involving massive deformations , 2011 .

[90]  Wing Kam Liu,et al.  Meshfree and particle methods and their applications , 2002 .

[91]  J. Brackbill,et al.  Shear deformation in granular materials , 1998 .

[92]  Alexey Stomakhin,et al.  A material point method for snow simulation , 2013, ACM Trans. Graph..

[93]  Mridul Aanjaneya,et al.  IQ-MPM , 2020, ACM Trans. Graph..

[94]  Clarence W. Rowley,et al.  Model Reduction for fluids, Using Balanced Proper Orthogonal Decomposition , 2005, Int. J. Bifurc. Chaos.

[95]  Jure Leskovec,et al.  Learning to Simulate Complex Physics with Graph Networks , 2020, ICML.

[96]  Kamyar Azizzadenesheli,et al.  Fourier Neural Operator for Parametric Partial Differential Equations , 2021, ICLR.

[97]  King-Sun Fu,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence Publication Information , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[98]  Chenfanfu Jiang,et al.  Soft Hybrid Aerial Vehicle via Bistable Mechanism , 2020, 2021 IEEE International Conference on Robotics and Automation (ICRA).

[99]  Craig Schroeder,et al.  Optimization Integrator for Large Time Steps , 2014, IEEE Transactions on Visualization and Computer Graphics.

[100]  Meire Fortunato,et al.  Learning Mesh-Based Simulation with Graph Networks , 2020, ArXiv.

[101]  Kookjin Lee,et al.  Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders , 2018, J. Comput. Phys..

[102]  Jiancheng Liu,et al.  ChainQueen: A Real-Time Differentiable Physical Simulator for Soft Robotics , 2018, 2019 International Conference on Robotics and Automation (ICRA).

[103]  Charbel Farhat,et al.  The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows , 2012, J. Comput. Phys..

[104]  Lalit K. Mestha,et al.  A deep learning framework for model reduction of dynamical systems , 2017, 2017 IEEE Conference on Control Technology and Applications (CCTA).

[105]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[106]  M. Stein Large sample properties of simulations using latin hypercube sampling , 1987 .

[107]  Alfio Quarteroni,et al.  Machine learning for fast and reliable solution of time-dependent differential equations , 2019, J. Comput. Phys..

[108]  Charbel Farhat,et al.  A method for interpolating on manifolds structural dynamics reduced‐order models , 2009 .

[109]  Jiajun Wu,et al.  Learning Particle Dynamics for Manipulating Rigid Bodies, Deformable Objects, and Fluids , 2018, ICLR.