Asymptotic analysis of the exponential penalty trajectory in linear programming

We consider the linear program min{c′x: Ax⩽b} and the associated exponential penalty functionfr(x) = c′x + rΣexp[(Aix − bi)/r]. Forr close to 0, the unconstrained minimizerx(r) offr admits an asymptotic expansion of the formx(r) = x* + rd* + η(r) wherex* is a particular optimal solution of the linear program and the error termη(r) has an exponentially fast decay. Using duality theory we exhibit an associated dual trajectoryλ(r) which converges exponentially fast to a particular dual optimal solution. These results are completed by an asymptotic analysis whenr tends to ∞: the primal trajectory has an asymptotic ray and the dual trajectory converges to an interior dual feasible solution.

[1]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[2]  J. Strodiot,et al.  An exponential penalty method for nondifferentiable minimax problems with general constraints , 1979 .

[3]  T. Elfving On some methods for entropy maximization and matrix scaling , 1980 .

[4]  Sven Erlander,et al.  Entropy in linear programs , 1981, Math. Program..

[5]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[6]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[7]  R. Rockafellar Conjugate Duality and Optimization , 1987 .

[8]  Khalil Mouallif,et al.  Une méthode de pénalisation exponentielle associée à une régularisation proximale , 1987 .

[9]  N. Megiddo Pathways to the optimal set in linear programming , 1989 .

[10]  Y. Censor,et al.  On iterative methods for linearly constrained entropy maximization , 1990 .

[11]  C. Roos,et al.  Inverse barrier methods for linear programming Report 91-27 , 1991 .

[12]  Clóvis C. Gonzaga,et al.  Path-Following Methods for Linear Programming , 1992, SIAM Rev..

[13]  F. Jarre Interior-point methods for convex programming , 1992 .

[14]  J. Borwein,et al.  A Survey of Convergence Results for Maximum Entropy Methods , 1993 .

[15]  Osman Güler,et al.  Limiting behavior of weighted central paths in linear programming , 1994, Math. Program..

[16]  J. Dussault,et al.  Stable exponential-penalty algorithm with superlinear convergence , 1994 .

[17]  C. Roos,et al.  Inverse barrier methods for linear programming , 1994 .